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Magnetohydrodynamic Stability

and Thermonuclear Containment

An Introduction | by A. JEFFREY AND T. TANIUTI

During the recent decade of progress in the confinement of high tem-
perature plasmas, instabilities of various different types have been en-
countered. As a general rule these instabilities may be classified into one of
two groups: the macroscopic instabilities and the microscopic instabilities.
The former are concerned with phenomena at low frequency and long
wavelength in which the plasma may be assumed to be neutral in charge.
In the latter, the frequency of the micro-instabilities is not necessarily low,
the collective electric field often plays an essential role, and the velocity
distribution of the plasma is not necessarily Maxwellian. Consequently it
then becomes necessary to work in terms of kinetic theory and to solve the
coupled Vlasov and Maxwell equations.

The present state of knowledge is such that it is not always clear which
observable effects may be directly attributed to microscopic instabilities,
and no discussion of such matters will be attempted in this introduction,
In the case of macro-instabilities, which will form the object of this review
and collection of papers, the phenomena of interest vary so slowly that the
displacement current may be neglected, and the Larmor radius of the ions
as well as of the electrons may be assumed to be zero in the zeroth approxi-
mation (i.e., m/e may be set equal to zero). Hence the discussion of macro-
scopic instabilities is usually based on magnetohydrodynamics or, for a
collisionless plasma, on the drift approximation.

For plasma motion in a direction transverse to the magnetic field, the
drift approximation may equivalently be replaced by a magnetohydro-
dynamic description without dissipation but having an anisotropic pres-
sure; the so-called Chew, Goldberger, and Low (CGL) equation or the

1

A. JEFFREY AND T. TANIUTI



2 A. JEFFREY AND T. TANIUTI

double adiabatic magnetohydrodynamic description.!? The CGL equation,
however, has a limited range of applicability and does not provide a good
approximation when plasma motion varies appreciably along the magnetic
lines of force. A rigorous mathematical treatment of this problem can be
achieved by working with the coupled Vlasov and Maxwell equations in the
limit m/e — 0 which then exactly correspond to the drift approximation.
This method of solution, given by Kruskal and Oberman,® will be called
the quasi-magnetohydrodynamic description.

It is useful to note here the relationship that exists between ideal
magnetohydrodynamics (MHD without dissipation), double adiabatic
magnetohydrodynamics and quasi-magnetohydrodynamics.

Since these theories do not involve dissipation, stable equilibrium con-
figurations are determined by the minima of the potential energy of the
total system. Thus for a stable equilibrium there exists a potential energy
W with the property that the variation 6W of W is positive for all possible
perturbation around the equilibrium condition (i.e., W > 0). Denote the
OW of the ideal, the double adiabatic, and the quasi-magnetohydrodynamic
descriptions by 6Wwunp, 6Wcer, and 6Wquasi, respectively. Then it has
been proved by Bernstein®® and others?—® that for a system which is initially
in a state of stable equilibrium and is subjected to an isotropic pressure
there exists the inequality

Wuep < 6Wquasi < §WegL.

When the collision time is much greater than the growth rate of the
instability the pressure does not necessarily remain isotropic even if it is
so initially and as a result the use of the ideal magnetohydrodynamic
description is not justified. However by virtue of this inequality, the system
is stable in both the quasi-magnetohydrodynamic and the double adiabatic
magnetohydrodynamic descriptions whenever it is stable in the ideal
magnetohydrodynamic description. It should also be noted that stability

1G. F. Chew, M. L. Goldberger, and F. E. Low, The Boltzman equation and the
one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc.
(London) A286, 112-118 (1956).

2 M. N. Rosenbluth and N. Rostoker, Theoretical structure of plasma equations.
Phys. Fluids 2, 23-30 (1959).

3 M. D. Kruskal and C. R. Oberman, On the stability of a plasma in static equi-
librium. Phys. Fluids 1, 275-280 (1958).

3 I, Bernstein, E. A. Frieman, M. D. Kruskal, and R. Kulsrud, Proc. Roy. Soc.
(London) A244, 17-40 (1958). This paper is included in the present volume (p. 39).

4 B. A. Trubnikov, Dynamical principle of stability for magnetohydrostatic systems.
Phys. Fluids b, 184-191 (1962).

8§ R. Kulsrud, On the necessity of the energy principle of Kruskal and Oberman for
stability. Phys. Fluids, 6, 192-195 (1962).
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MHD STABILITY AND THERMONUCLEAR CONTAINMENT 3

in the double adiabatic magnetohydrodynamic description does not
guarantee the stability of the quasi-magnetohydrodynamic description.
This provides a justification for using the ideal magnetohydrodynamic
description in the stability analysis of such systems.

Let us now assume that the motion of a plasma is governed by the
hydromagnetic equations. Then, for an inviscid plasma, the equation of
motion takes the form

av

Pt

in which p is the mass density, v is the flow velocity, p is the pressure, j
is the current vector, B is the magnetic induction vector, ¢ is an external
potential and where d/dt denotes the substantial or Lagrangian derivative

d/dt + v - v. Neglecting displacement current in the Maxwell equations
gives the result®®

- —wp+1ixB- vy 1)

c .
Zﬂ_‘ v X B - J’
and consequently the right-hand side of Eq. (1) reduces to
—v( +52)+l(3-v)3— vé )
L 4 PV

The second term of this expression can be interpreted as the magnetic
tension acting as a restoring force against the bending of the magnetic lines
of force. The electric field E is given by Ohm’s law

. 1
n =E+[vXB]
where 7 is the resistivity, by means of which the magnetic induction law,

described by the second Maxwell equation, can be written as

dB c _
-%—VX[VXB]—EVX[WVXB]—O-

If, moreover, n = 0 and the motion is also adiabatic, we have, besides the
mass conservation law, the conservation laws for the entropy and for the
magnetic flux,

%+ v-(ev) = 0, (22)

4 o) =0, (2b)

% Gaussian units are used throughout, and we assume that the magnetic suscepti-
bility is equal to unity.

A. JEFFrReYy AND T. TaNIUTI



4 A. JEFFREY AND T. TANIUTI

and

0B

'a?‘VX[VXB]:O’ (2¢)

while the electric field is given by the equation
1
E+—c—[vXB]=O. 3)

Equations (1), (2), and (3) constitute the fundamental equations for ideal
magnetohydrodynamics.®

Suppose now that the plasma is in equilibrium. Then, from Eq. (1),
we have the equilibrium condition,

1.
VP=EJXB. 4)

The boundary conditions may be classified as belonging to one of two types,
which we shall denote by (I) and (IT). Case (I) occurs when the plasma is
surrounded by a vacuum magnetic field across the plasma-vacuum inter-
face of which the mechanical pressure is balanced by the magnetic pressure.
In case (II) the plasma is bounded by a conducting wall on which the pres-
sure becomes zero. In case (I) the vacuum magnetic field is itself bounded
by a conducting wall and, as a special case, the magnetic field may not
exist inside the plasma. A mathematical expression of these boundary
conditions has been given, for example, by Bernstein et al.3* Equation (4)
implies that B and j are normal to vp and hence that they lie on an equi-
pressure surface. Since the plasma boundary must be an equipressure sur-
face and the magnetic field is solenoidal we find that the magnetic lines of
force cover the equipressure surface. It has been proved that the closed
equipressure surfaces on which the magnetic field nowhere vanishes must
be topologically equivalent to a torus. At the same time it cannot be a
simple torus but must be a twisted one, otherwise the magnetic lines of
force must be helical.”~® An equilibrium configuration of this type is realized
in the Stellarator, which has been extensively investigated by Spitzer and
others.10:11

8 For the details of the fundamental equations of magnetohydrodynamics see, for
example, A. Jeffrey and T. Taniuti, “Nonlinear Wave Propagation with Applications
to Physics and Magnetohydrodynamics,” Chap. 4. Academic Press, New York, 1964.

7M. D. Kruskal and R. M. Kulsrud, Equilibrium of a magnetically confined plasma,
in a toroid. Phys. Fluids 1, 265-274 (1958); and Ref. 6, Section 8.4.

8 8. Hamada, Hydromagnetic equilibria and their proper coordinates. Nucl. Fusion
2, 23-27 (1962).

¢ B. B. Kadomtsev, On equilibrium of a plasma under helical symmetry. Soviet Phys.
JETP (English Transl.) 10, 962-963 (1960).

107, Spitzer, The stellerator concept. Phys. Fluids 1, 253-264 (1958).

11 J, L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, Some stable
hydromagnetic equilibria. Phys. Fluids 1, 281-296 (1958).
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MHD STABILITY AND THERMONUCLEAR CONTAINMENT 5

A discussion of the stability of the equilibrium characterized by Eq. (4)
may be based on the linearized form of Eqgs. (1) to (3). In terms of the small
displacement vector & Eq. (1), when expressed in Lagrangian form,
becomes

9%
pPo EE = F{f}, (5)

in which po is the unperturbed density and F{£} is a linear function with
respect to € and its spatial derivatives. This result is in fact obtained by
using Eq. (2) to express p, p, and B after an infinitesimal time A¢ in terms
of their equilibrium values and £ at the start, and then introducing the
resulting expressions into Eq. (1) and retaining only the first-order terms
in & The explicit form of F{£} has been given by Bernstein.?* If, for some
displacement &, F{£} has the same direction as &, then such a displacement
is accelerated, and the perturbation grows, and so the equilibrium is un-
stable. This simple method for the determination of unstable modes is
often useful and will sometimes be utilized in the subsequent explanations
of instabilities.

Owing to the self-adjointness of F{&} which follows directly from its
explicit form 3 overstability, comprising an initial unstable oscillatory
behavior, does not occur. That is, when £ is given in the form & ~ e™r%,,
Eq. (5) reduces to a Sturm-Liouville type eigenvalue problem —w.?po€, =
F{z.}, the eigenvalues, w,? of which are real with negative values of w.?,
should they occur, corresponding to instability.

An alternative method of solution is to utilize the variational principle.
When the plasma is in equilibrium the potential energy, say W, is given
by the sum of the energy of the magnetic field, the internal energy, and the
potential energy due to external forces. Namely, we have

W = /{gnz+pv+p¢}dr, ®)
v

where ¢ is the external potential, U is the internal energy density per unit
mass, and where the integration is extended over the whole region occupied
by the plasma. When the plasma may be assumed to be a polytropic gas,
so that the internal energy is proportional to the temperature, the equation
of state leads directly to the relationship

Y

Let us now consider a perturbed state about an equilibrium condition
in which the small displacement vector & is arbitrarily prescribed. The
variations of p, p, and B denoted by ép, dp, and 6B, respectively, are not
independent since they must satisfy the conservation laws (2), by means

A. JEFFREY AND T. TANIUTI



6 A. JEFFREY AND T. TANIUTI

of which dp, 6p, and 6B may be expressed in terms of the equilibrium condi-
tions po, po, and B,. Inserting these expressions into Eq. (6) results, to the
first order in £, in the equilibrium equation (4). Hence the nonvanishing
next lowest order term is the second-order one which is quadratic in ,
which we now denote by é6W. By analogy with the stability theory of
particle mechanics, we assert that the system is stable if and only if W > 0
for any £. If 6W becomes negative for some &, the system is unstable. This
can be proved rigorously by noting the identity3s

oW = —3[E-Fit) dr,

in which F{¥} is given by Eq. (5) and, as before, dr denotes a volume
element.

Under the boundary condition (I) the plasma-vacuum interface is also
displaced. Hence by means of the Gaussian divergence theorem the
divergence terms in the integrand of 6W may be transformed into a surface
integral. After some manipulation involving the boundary conditions we
find that there are some terms in this surface integral that are dependent
only on the vacuum field quantities. The surface integral of such terms can
then be transformed further into a volume integral over the vacuum
region. As a result the explieit form of 6W comprises three parts, namely,
oW g, 6W s, and 6Wy. Here 6W r is the volume integral over the unperturbed
plasma region, 6Wg is the surface integral over the unperturbed plasma
boundary which is equal to the work done against the displacement of the
boundary, and §Wy is the volume integral over the vacuum region which is
equal to the change of the vacuum magnetic field energy resulting from
the deformation of the plasma-vacuum interface. The explicit form of
oW given by Bernstein® is as follows:

oW 5WF + 5Ws + 5WV, (73)

with

Wr =13 f dr {% CE(oX Q) + (vpev-E + E-Vpo) V-

- (E'Vtﬁ)v'(pof)}, (7b)
Ws =13 /dﬂ (n'f)zn‘<v (g—';z + Po)>, (7c)

and
oWy = o [ B/ dr, (7d)

MHD STABILITY AND THERMONUGCLEAR CONTAINMENT



MHD STABILITY AND THERMONUCLEAR CONTAINMENT 7

where Q is used to denote the expression

Q=vXI[EXBJ],

in which the subscript 0 refers to the equilibrium condition, n is the unit
normal to the interface, (X) denotes the jump in X across the interface
in the direction n, and do denotes a surface element.

It is difficult to investigate the sign of 6W for all & but it is often
possible to find a class of displacements making §W negative (i.e., some
type of instability). Generally speaking, a perturbation which changes the
magnetic field has a tendency to increase the magnetic energy because of
the effect of the magnetic tension in the lines of force which provides a
restoring force. Hence if the magnetic energy is much greater than the
internal energy a mode which changes the magnetic field has a tendency to
make 6W positive. Consequently it is those perturbations which do not
change the magnetic field which are most likely to cause instability. In
other words, in order to find an unstable mode, we should seek to find a
displacement which does not disturb the magnetic field. In the following
discussions we shall use heuristic arguments to discover unstable modes
in an attempt to understand the possible mechanisms of instability experi-
enced by a confined plasma.

We consider a plasma supported against gravity by a magnetic field.
In equilibrium the plasma lies above the plane £ = 0, say, in the half-
space > 0, and a uniform magnetic field is applied in the horizontal
2z direction in the vacuum occupying the lower half-space, z < 0. We shall
assume that the magnetic field does not exist inside the plasma.

For simplicity we also assume that the plasma is incompressible and
consequently that the density is everywhere constant. Then the equilibrium
equation in the plasma takes the form

dp
d_:ll_ ryg,

and at the interface between the plasma and the vacuum we have the
equation of pressure balance
BZ
D= '8;; R

in which B is the strength of the vacuum magnetic field. Suppose the plasma
is disturbed slightly in a direction normal to the magnetic field, as is shown
in Fig. 1, in such a manner that the plasma located in the region P’ inter-
changes position with the magnetic field occupying the region P of the
same cross-sectional area. Since the magnetic lines of force are not bent
by such a displacement the magnetic field energy is unchanged. On the

A. JEFFREY AND T. TANIUTI



8 A. JEFFREY AND T. TANIUTI

other hand the pressure is increased in P by an amount pg |6z|. Hence the
plasma is pushed down at P with the result that the perturbation grows.
The system is therefore unstable. Since the wavy perturbation tends to
grow to a flute shape an instability of this type is often referred to as a
Slute-type instability.

Fia. 1. Disturbed plasma-vacuum interface.

This result may also be deduced from the energy principle. Since the
change of the internal energy of an incompressible plasma may be attributed
to the work done by external forces, in the present case it may be expressed
as the work done on the interface against the pressure gradient [cf. Eq.

(7¢)]:
Jdo @-¥)M-vp = — [do (0-§)%n- V9,

in which n is the normal to the interface pointing toward the plasma and ¢
is the gravitational potential. Since ¢ increases as z increases, the above
integral is negative; therefore the system is unstable. (Since ¢ is linear in
z the change of the potential energy inside the plasma is first order with
respect to the magnitude of the displacement, and consequently it does
_ not contribute to W, which is second order.) The magnetic field does not
play an essential role in this discussion, and it has been shown that the
characteristic features of the instability are the same as those of the
Rayleigh-Taylor instability in ordinary hydrodynamics in which, in the
absence of a magnetic field, a fluid is supported against gravity by a fluid
of smaller density.!?

Let us obtain a rough estimate of the growth rate of the instability
in this well-known example. Since the density is constant the perturbed
equation of motion takes the form

9%

Pogn = —V op,

128, Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability,” §91. Oxford
Univ. Press (Clarendon), London and New York, 1961.

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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while at the interface v ép = (p1 — p2)g = —(p)g in which the subscripts
2 and 1 refer, respectively, to the upper and lower half-planes and {p) =
p2 — p1. For an unstable mode |w| may be considered to be the growth rate,
namely, the e-folding time of the growing instability. On the fluid-fluid
interface the equation of motion may be approximated by —w?s¢ =~ (o)g
in which p is the mean density. Hence, putting ¢ ~ 1/k, where k is the
wave number of the perturbation, we have

lw?| =~ gk <%>- (8a)

In the limit as the density of the lighter fluid tends to zero our problem
tends to the case of a plasma supported by a vacuum magnetic field, and
we have

|o?| ~ gk, (8b)

which is identical to the result of the exact calculation performed by
Kruskal and Schwarzschild.!?=

So far we have assumed that the magnetic field does not exist inside the
plasma, but even if this is not the case we still have the same result when-
ever the magnetic field is uniform and parallel to the field outside the
plasma. This is due to the fact that for perturbations normal to the mag-
netic field, of the type illustrated in Fig. 1, the magnetic lines of force
inside as well as outside the plasma are not bent, and consequently the
magnetic energy does not change. This may be seen analytically as follows.
The magnetic field induced by the motion of the plasma across the applied
magnetic field is given by v X [v X B], where B is the applied magnetic
field and v is the velocity of the plasma [cf. Eq. (2¢)]. However, for the
present configuration in which the perturbation is independent of z, while
B is directed along the z axis, we have 0B/dt = —B(v-v) — (v-v)B, which
for an incompressible fluid reduces to (8/6t + v-v)B = 0, implying that
the magnetic field is carried unchanged with each fluid element. Hence the
magnetic energy obtained by integrating over the totality of fluid elements
is unchanged. Moreover if B is uniform over the whole space, as is the case
in which a heavier fluid is supported by a lighter one, then the magnetic
field does not change everywhere. The growth rate of the instability is
again given by Eq. (8a),1?* We should note however that even if the plasma
is not displaced in the z direction (i.e., v, is zero), the expression will not
be zero if v is a function of z; namely, if the displacement transverse to the
magnetic field varies along the magnetic field.

22 M. D. Kruskal and M. Schwarzschild, Proc. Roy. Soc. (London) A223, 348-360
(1954). This paper is included in the present volume (p. 63).
126 §. Chandrasekhar, ftn. 12, §97, p. 464.

A. JEFFReY AND T. TANIUTI
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In these examples the magne;ic fields act only to maintain the pressure
balance in equilibrium, and they do not provide any stabilizing effect.
However, as shown in Eq. (1), besides an isotropic pressure the magnetic
field provides a tension which acts as a restoring force against the bending
of lines of force and so exerts some stabilizing effect. In fact, if a perturba-
tion has a component along the magnetic field as well as the transverse
component considered so far, the system is stable for wavelengths shorter
than some critical one dependent on the magnetic field strength.”?c In this
case the interface in Fig. 1 is disturbed not only along the y-direction but
also along the z direction, so that the lines of force are necessarily bent and
the magnetic tension acting along the lines of force produces a restoring
force which opposes this bending. This restoring force is obviously more
effective for distortions of larger curvature as, for example, in the case of
shorter wavelength perturbations along the magnetic field. The modifica-
tion to Eq. (8) resulting from this effect may be estimated roughly as
follows.

Let the plasma be displaced as before in a direction transverse to the
magnetic field, but let the displacement be modulated along the magnetic

field (i.e., £, is a function of z). The magnetic tension resulting from (B-v)B
in Eq. (1') may be expressed as B?/R, where the radius of curvature R of
the line of force is given by the equation

2
2R |bz| =~ (%) or, approximately, R = ]% r:x—l,

in which k., is the z component of the wave number vector of the perturba-
tion, B is the strength of the magnetic induction vector inside the plasma,
and where we have assumed |dz| < R (cf. Fig. 2). Hence we have

—w’ploz|= (p)g — Bk |oxl.

122 S Chandrasekhar, ftn. 12, §97.

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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Putting éx = 1/k yields

Bk’
—e {0 (&)

which shows that for sufficiently large k, the system is stable. This expres-
sion is correct, apart from numerical factors, provided the magnetic fields
inside and outside the plasma are the same.'* For a plasma bounded by a
vacuum the equation obtained by letting the smaller density tend to zero
is still valid within an order of magnitude.

It is interesting to note that the effect of the magnetic tension is the
same as that of the surface tension in the Rayleigh-Taylor instability
without a magnetic field. Namely, if at the fluid-fluid interface the surface
tension T is introduced, the growth rate for such a system may be
derived from Eq. (8¢) by replacing (B/R?)k+B by T.: in which k is the
wave number vector of the perturbation.!?> Alternatively, introducing the
Alfvén frequency ws through the equation

B2
w4l = 4__15 k2,
we may write Eq. (8c) in the form
w? =~ —gk 4+ wa?, (8¢c")

which shows that for short wavelengths the disturbance propagates as an
Alfvén wave while for long wavelengths the instability mode is dominant.
From these results we may conclude that the transverse perturbation
characterized by k-B = 0 is the one most likely to produce instability
in the system under consideration. The results also suggest a possibility
of stabilizing the Rayleigh-Taylor instability. For example, let the lines
of force of the uniform magnetic field be fixed at both ends to perfectly
conducting plates. Then, even if the plasma is displaced normal to the
magnetic field, the magnetic lines of force are necessarily bent, and we
have a situation similar to the one just discussed (cf. Fig. 3). Hence Eq.

X

F1e. 3. Rayleigh-Taylor instability.

(8c) is still valid to within an order of magnitude when k3! is replaced by
the distance between the plates and {p) = 25 is set equal to p. Taking into

A. JEFFREY AND T. TANIUTI
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account the change of the vacuum magnetic field caused by the bending
of the boundary lines of force and the resulting change in the magnetic
pressure, Vedenov and others'® derived the exact stability condition.

An alternative method of stabilization of the Rayleigh-Taylor type
instability could be achieved by shearing the lines of force. Let the hori-
zontal uniform magnetic fields inside and outside the plasma no longer be
parallel so that the magnetic field has a shear across the interface. Then the
interchange illustrated in Fig. 1 is prohibited, and any deformation of the
interface produces a bending of the lines of force. For example, suppose
that the magnetic field inside the plasma has only the y component B,,
say, while the vacuum field outside the plasma has the z component B,,
as well as the same y component B,, and consider a perturbation in the
(z, ) plane, independent of z. If B, is zero, the configuration is the same
as that shown in Fig. 1, and the equilibrium is unstable. However, in the
presence of the y component of the magnetic field, such a perturbation
necessarily bends the lines of force along the y axis, and we again have the
same magnetic tension effect that was discussed previously in Eq. (8c),
though k. is now replaced by k,.

In the foregoing discussions we have neglected all the dissipative terms
such as finite electrical resistivity and viscosity, since they are usually
small outside the region in which the physical quantities vary rapidly and
even in such a region they are effective only for short wavelengths. In some
cases these effects can give rise to a new type of instability as has been
recently discussed by Furth et al.,'** who showed that resistivity acts in a
manner that destroys the shear stabilization just mentioned.'* In order
to understand the role played by resistivity in this destabilization process
let us first consider Ohm’s law:

w=E+[xB. ©)

The right-hand side is equal to the electric field in the coordinate
system moving with the plasma and is equal to zero if 7 is zero; namely,
the first term, E, which is the electric field in the laboratory system,
changes so as to cancel out the induced field given by the second term.
This electric field E results from the induction of the magnetic field in
such a manner that the lines of force are frozen into the plasma. If 7 is

13 A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Stability of a plasma. Soviet
Phys—Usp. (English Transl.) 4, 332-369 (1961).

2 H. P. Furth, J. Kileen, and M. N. Rosenbluth, Phys. Fluids 6, 459-484 (1963).
This paper is included in the present volume (p. 77).

1J. D. Jukes, Stability of the sharp pinch and unpinch with finite conductivity.
Phys. Fluids 4, 1527-1533 (1961). See also K. V. Roberts and J. B. Taylor, Phys. Fluids
8, 315-323 (1965).

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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small but finite, E no-longer exactly cancels out the second term and a
slight defreezing of the lines of force occurs. The degree to which E then
compensates the second terms depends, naturally, on the size of 4. In the
other extreme when 7 is very large E will not change and the motions of
the plasma and of the lines of force become detached. Hence Eq. (9)
reduces to

. 1
m = [v X By, (9

where B, is the equilibrium magnetic field and j, is the first-order perturba-
tion of the current j. This then produces a Lorentz force F, = j; X B,
which acts on the plasma. Since

. 1
F.=jiXB,= ;[BO(V'BO) — VB¢,

the force opposes the fluid motion, and it becomes stronger as n — 0. This
means that for small # a strong force is necessary if the plasma is to be
detached from lines of force so that E and consequently B do not change.
However if B, has a null point, this restoring force becomes arbitrarily
weak in the neighborhood of that point and may be dominated there by
other forces acting to accelerate the fluid motion. Analysis shows that,
even if 7 is not large, Eq. (9’) is still approximately true in regions where
B, is small.

*Bo +a
- ol
o
S ~
N
< 1:&
______ N _\_____;ea
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\\
~
____________ s
-a -Bo
Fic. 4.

As an illustrative example, consider a current layer of width 2a, the
magnetic field in which is given by (see Fig. 4)

BzO = Bgo =0 (103,)
and
By=2z  —a<z<q, (10b)

resulting in the current density

Jeo =Jyo =0 : (11a)
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-

and
Jzo = 1. (11b)

Equations (10) imply that the magnetic field reverses its direction in cross-
ing the layer, and so it must experience a 180° shear. We note that, for
finite resistivity s, the equation for the equilibrium magnetic field takes
the form

vX[vXBy]=0

which is satisfied by Egs. (10) if 5 is constant.

It can be shown!3s that Eqgs. (10) may be used to represent the magnetic
field without any loss of generality. Namely, even for a more general
twisted magnetic field such as that illustrated in Fig. 5 which does not

7
//’, l/'l v
/ H A

i /
B
s ’ ’
RPN IR
Ry

Fi1a. 5. Twisted magnetic field.

have a null point, a wave number vector k can always be chosen for the
perturbation such that (k-B) becomes zero at any desired point. The suc-
cess of this argument is due to the fact that the component of the magnetic
field normal to vector k is ignorable, and so thesystem of equations govern-
ing the perturbed field and flow can be reduced to a problem in the (k, x)
plane involving the vector k which is perpendicular to the magnetic field
at (k-B) = 0. Hence, if the k axis is identified with the y axis of Fig. 4,
we obtain the configuration that was previously examined.

The plasma will be assumed to be incompressible but to have an in-

homogeneous density distribution, the change of which is governed by the
continuity equation

%+ @n=0. (2a)
From Eqs. (10) the null point of the magnetic field is given by z = 0 in

the neighborhood of which the detached motion is realized. This small
region may be specified as —ea < z < ea.

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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Let the plasma be initially in equilibrium under the action of gravity,
with the magnetic field so prescribed, and then suppose that the plasma
moves upward in the positive z direction, as shown in Fig. 4. The vector
F, is then directed downward and acts as restoring force. However if the
density of the plasma increases upward, an element of the low density
being carried upward decreases the local density at an upper level, say by
an amount |dp|. This change of density gives rise to a perturbation of the
gravitational force of an amount gép. Since dp is negative the perturbation
force thus produced is directed locally upward so that it acts to accelerate
the motion. For a sufficiently small ea this force becomes greater than the
restoring force F, since the latter is only of order B2, = (ea)? thereby leading
to the instability. Since this instability is realized by an interchange be-
tween heavier and lighter elements, this form of instability is sometimes
referred to as the interchange mode. However the origin of the instability
differs from that of the interchange instability previously considered.

Instead of the variation of density, a small spatial variation of resistiv-
ity may be assumed, in which case an element of low resistivity is carried
upward, decreasing the local resistivity at an upper level. This change of
resistivity gives rise to a perturbation current resulting in a Lorentz force

— -

(a)

F1a. 6. The tearing mode.

which acts to accelerate the disﬁla,cement. This mode of instability is often
called the rippling mode. In connection with these modes we should also
mention the tearing mode in which two magnetic lines of force, as shown in
Fig. 6(a), are deformed as illustrated in Fig. 6(b) and are then torn into
two loops such as those in Fig. 6(c). This type of instability was originally
found by Dungey'® for an X-type neutral point of a magnetic field. For a

15 J. W. Dungey, “Cosmic Electrodynamics,” pp. 98-102. Cambridge University
Press, London and New York, 1958.
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detailed discussion of these modes of instability we refer to the paper by
Furth et al.'®

Let us now consider another type of ripple mode which was found by
Kadomtsev®1” in connection with an anomalous diffusion process in the
positive. column discharge. Let the electric and the magnetic fields be
applied in the positive z direction and assume that the temperature in-
screases in the direction of negative z so that the resistivity increases in
the direction of positive z. Now suppose that a rectangular volume of
plasma immersed in the plasma occupying the whole space moves slightly
in the direction of positive z, as shown in Fig. 7. The plasma of low resistiv-

FiG. 7.

ity is then carried in the positive x direction, so that at one end of the
plate on the side of the positive z axis the local resistivity is decreased.
Hence, when the plate is inclined to the direction of the applied electric
field (the z axis), the decrease in resistivity will cause a surplus current to
flow through the plate. As a result charge is accumulated on both faces of
the plate giving rise to the electric field E’ directed in the positive y direc-
tion. Therefore the drift E’ X B/B? will lead to instability. In the anoma-
lous diffusion process, which was found by Hoh and Lehnert!® to take place
in the positive column discharge, the configuration is more complicated
and needs elaborate study. However the essential mechanism, which is
caused by a screw instability of the positive column, can still be understood
by analogy with the ripple instability discussed here. A detailed analysis is

16 B. B. Kadomtsev, Convection of the plasma of a positive column in a magnetic
field. Soviet Phys.—Tech. Phys. (English Transl.) 6, 927-933 (1962).

17 B. B. Kadomtsev, Criteria for instability and gain. Soviet Phys.—Tech. Phys.
(English Transl.) 6, 882-888 (1962).

18 F. C. Hoh and B. Lehnert, Diffusion processes in a plasma column in a longitudinal
magnetic field. Phys. Fluids 8, 600-607 (1960).
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to be found in the paper by Kadomtsev and Nedospasov!®® while for an
intuitive explanation we refer to the papers by Hoh and Lehnert.18-20

Instead of using a magnetohydrodynamic description it is also possible
to understand the instability mechanisms so far discussed on the basis of
particle behavior. Explanations of this type have been given by Rosenbluth
and Longmire.?> For example, consider the first system to be studied in
which the plasma occupied the half-space x > 0 and was supported below
" against gravity by a vacuum magnetic field. When the magnetic field
does not exist inside the plasma the only force acting on a particle is that
due to gravity. Hence, under the perturbation that was illustrated in Fig. 1,
particles which meet the interface at a point on the convex part P will,
on the average, have somewhat greater velocity than those impinging at
P’ so that they exert a higher pressure on P. In this case we require that a
particle which is reflected from a point of P should not arrive directly at
another point of P without first being reflected from some other part of
the interface. Namely, the wavelength of the perturbation must be less
than the distance traversed by particles along the interface without under-
going a reflection.

When a uniform magnetic field exists inside a plasma, gravitational
forces cause the electrons and ions to drift in opposite directions. Let the
magnetic field be e,B, and the gravitational acceleration be —e.g, in which
e, and e, are the unit vectors along the x and the z axes, respectively. Then
the drift velocity for a particle of mass m and charge e is given by

_ mcge: X Bee.
e 302

For the configuration shown in Fig. 1 this drift will result in charge separa-
tion in a surface layer of the plasma, as indicated in Fig. 8. Since the drift
velocity is proportional to mass, the electron drift is much smaller than the
ion drift, and may be neglected. The charge separation thus produced
causes an electric field which then induces a further plasma drift in the
negative z direction with the velocity [E X Bge.]/B¢:. The perturbation
therefore grows. This discussion illustrates that the instability is to be
attributed to charge separgtion on the plasma surface. Hence if the plasma

82 B. B. Kadomtsev and A. V. Nedospasov, J. Nucl. Energy: Pt. C 1, 230-235 (1960).
This paper is included in the present volume (p. 103).

19 F. C. Hoh and B. Lehnert, Screw instability of a plasma column. Phys. Rev. Lelters
7, 75-76 (1961).

nk C. Hoh, Screw instability of a plasma column. Phys. Fluids b, 22-28 (1962).

202 M. N. Rosenbluth and C. L. Longmire, Ann. Phys. (N.Y.) 1, 120-140 (1957).
This paper is included in the present volume (p. 109).
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is bounded by conducting plates at both ends, as was illustrated in Fig. 3,
the space charge will move along the lines of force and be short-circuited
at the plates with a resultant stabilizing effect.

This also indicates that any force F that is independent of charge will
cause a similar type of instability if it acts towards the vacuum and normal
to the field, since it results in the drift velocity (mc/e)[F X Bee.]/ B
which again produces charge separation. For instance, consider a plasma

Fic. 8. Charge separation.

moving with an acceleration « and being pushed at one end by a magnetic
piston (i.e., by a magnetic pressure resulting from an external vacuum
magnetic field applied in a direction normal to the motion of the plasma).
Then, in the reference system moving with the boundary, an inertia force
—a acts on a unit mass of the plasma. If this force is directed toward the
vacuum the inertia force has exactly the same effect as gravity, and the
system is unstable. An instability of this type has been observed in the
dynamic process of pinched discharges.?'?2

By similar reasoning it can be shown that a plasma undergoing rotation
is also unstable, in which case the effective force corresponding to gravita-~
tion is the centrifugal acceleration #?/r, where v is the circumferential
velocity of a particle situated at a radial distance r from the center of
rotation. When such a rotation is realized by crossed electric and magnetic
fields ¢ must be replaced by the substitution

P _CE
9=y =B

and consequently the growth rate \/gk takes the form

2D, J. Albares, N. A. Krall, and C. L. Oxley, Rayleigh-Taylor instability in a
stabilized linear pinch tube. Phys. Fluids 4, 1031-1039 (1961).

2T, S. Green and G. B. F. Niblett, Rayleigh-Taylor instabilities of a magnetically
accelerated plasma. Nucl. Fusion 1, 42-46 (1960).
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A detailed theoretical discussion of this point has been given by Gerjuoy
and Rosenbluth and also by Vedenov et al.'3-?% Experimental observations
have been reported by Rostoker and Kolb.2%

Curvature of the magnetic field in a plasma also gives rise to an in-
stability if the center of curvature lies inside the plasma. In this case the
force corresponding to gravitation results from the motion of charged
particles along the curved magnetic lines of force. Let the velocity com-
ponent of a particle along and perpendicular to a ling of force be v, and v,
respectively, and let its magnetic moment be u. Then the centrifugal force

acting on a particle of mass m which is directed normal to the field is
given by

muy,?
TR

where R is the radius-of-curvature vector pointing from the center of the
curvature to a point on the line of force. As well as this inertia force there
is also a magnetic force —u VB = —%(u/B) vB? acting on the particle.
If the plasma pressure is so low that the magnetic field approximates the
vacuum field, the following identity is true:

R B

;VB =BX[VXBl+ B-V)B=-Bx5+5B-vBE (12

Adding the two effects gives for the force on the particle normal to the field

(mv,? + 3mv,?) Tl (13)
where P, and P, are the components of the pressure tensor along and
perpendicular to the line of force. This expression at once leads to an
effective gravitational acceleration

Jett ™~

14
. (14)
Therefore if R is everywhere directed toward the vacuum so that the center
of the curvature lies inside the plasma, thereby making the plasma bound-
ary everywhere convex to the vacuum, the system is unstable.

P,+ Py
p

8 . Guerjuoy and M. N. Rosenbluth, Pinch with a rotating plasma. Phys. Fluids
4, 112-122 (1961).

# N. Rostoker and A. C. Kolb, Fission of a hot plasma. Phys. Rev. 124, 965-969
(1961).

% N. Rostoker and A. C. Kolb, Rotation of plasmas in 8 pinches. Phys. Fluids 6,
741-742 (1962).
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In all these cases the effective gravitational acceleration g is usually
small, and consequently the growth rate w = 4/gk is much less than the
ion cyclotron frequency. It has been pointed out by Rosenbluth and
others %= that in such a case the instabilities can be stabilized by the effect
of a finite ion Larmor radius which, in the drift approximation or in the
equivalent magnetohydrodynamic approximation, has been assumed to
be zero.

Let us return to the system illustrated in Fig. 8 and consider the drift
caused by the electric field due to the charge separation on the plasma
boundary. Suppose that the charge separation takes place as shown in Fig.
9 and that the spatial dependence is approximately of the form sin ky.
(Note that the magnitude of the charge separation is out of phase with the
displacement of the surface which takes the approximate form cos ky.)

lon orbit

Fia. 9.

From the Poisson equation it follows immediately that E, = cos ky. Since
the ions have a much greater Larmor radius than the electrons, as can be
seen from Fig. 9, they experience a weaker electric field than do the elec-
trons. On an average the difference is given by

(riv)?E, = —rik’E,,

where 7,z is the ion Larmor radius. As a result the drift velocity of the ions
is less than that of the electrons, and so a charge separation current j’
flows in the negative z direction. The order of magnitude of this current may
be estimated as

len(Vp: — Vpe)| = riLk?necE,/B,

where Vp; is the drift velocity of the ions in the weaker electric field, vp.
is the drift velocity of the guiding center (i.e., of the electrons) and n is
the equilibrium ion density.
On the other hand the original current j due to the gravitational drift is
equal to evpg 8n, where Vpg is the ion drift velocity due to gravity and is
%a M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nucl. Fusion: Suppl. No. 1,

143-150 (1962). This paper is included in the present volume (p. 131). See also A. B.
Mikkailovskiy, Nucl. Fusion 4, 108-114 (1964).
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equal to g X B/w.B. Here w, is the ion cyclotron frequency and én is the
density perturbation resulting from the hydrodynamic motion of the
plasma. Since the hydrodynamic motion is caused by the drift velocity
c[E X B]/B? (in the lowest order of perturbation the drifts accompanying
the charge separation do not contribute to the mass motion of plasma but
only to the current), én is given by the mass conservation condition

lw] n = —¢ (%’) kn,

where || is the growth rate of the instability and is equal to /gk. Con-

sequently we have

il ~ Lol (E)

IJ | -~ Wie nec B/
Therefore |j| becomes comparable in magnitude to |j’| if

Jﬂl ad (kril)z’

Wie

which is valid for a sufficiently slow growth rate. When this condition is
realized, the acceleration is significantly altered so that the instability may
be suppressed. An intuitive explanation has been attempted by Hoh.?

It has been shown by Roberts and Taylor?” and by Rudakov?® that the
finite Larmor radius effect can also be achieved by introducing terms taking
forms similar to those of viscosity into the hydromagnetic equation. Even
in the collisionless approximation the required terms are obtained as higher
order corrections to the CGL approximation. It should, however, be noted
that these terms do not lead to any dissipative effects and that they are
essentially different in nature from the true viscous effect. The finite
Larmor radius effect on the gravitational instability in a plasma with
finite resistivity has been discussed by Jukes.?®

It has already been shown [cf. Eq. (13)] on the basis of orbit theory that
a plasma which is confined by a magnetic field is unstable if its surface is
convex to the vacuum. We now discuss this result from the hydromagnetic

% F. C. Hoh, Simple picture of the finite Larmor radius stabilization effect. Phys.
Fluids 6, 1359 (1963).

K. V. Roberts and J. B. Taylor, Magnetohydrodynamic equations for finite
Larmor radius. Phys. Rev. Letters 8, 197-198 (1962).

% L. I. Rudakov, Influence of plasma viscosity in magnetic field on stability of plasma
(in Russian). Nucl. Fusion 2, 107-108 (1962).

2% J. D. Jukes, Gravitational resistive instabilities in a plasma with a finite Larmor
radius. Phys. Fluids T, 52-58 (1964). See also B. Coppi, Phys. Fluids 7, 501~517 (1964).
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view point. Let us first consider the case in which no magnetic field exists
inside the plasma. Suppose that the plasma-vacuum interface is displaced
locally toward the vacuum in such a way that the internal energy of the
plasma does not change. If the vacuum magnetic field increases with
increasing distance from the plasma boundary then, as the plasma moves
into the vacuum, the magnetic pressure on the interface increases. If we
assume that the mechanical pressure of the plasma remains constant then
the resultant force produced by the magnetic pressure gradient is in the
direction opposite to the displacement and so acts as a restoring force.
Therefore if at all points of the interface the vacuum magnetic pressure
increases with distance from the plasma boundary the system is stable.
On the other hand if it decreases with increasing distance from the bound-
ary, the magnetic pressure on the boundary becomes weaker as the inter-
face is displaced toward the vacuum and the perturbation can grow. Of
course in this case the change of the vacuum magnetic field due to the
perturbation must be taken into account since it would increase the mag-
netic pressure when the vacuum field is bounded by a conducting wall.
However, for displacements normal to the magnetic field, the increase in
the magnetic pressure due to the perturbation is usually less than the radial
attenuation of the unperturbed magnetic pressure.

The explanation may be understood more clearly if we note the similar-
ity to a gravitational potential. In the present case the interface is not
planar, and consequently the unperturbed magnetic field is not uniform and
so exerts a pressure. The instability is caused by the change of this magnetic
pressure on the interface resulting from the difference in the magnetic
potential. In either case the lines of force exert a restoring force against
bending, and consequently perturbations which interchange magnetic lines
of force are most likely to result in instability.

The results may also be considered from the variational standpoint.
Since the unperturbed P, is constant, choosing ¥ to satisfy v-¥ = 0 we
immediately find that §Wr is equal to zero and that W g reduces to

SWs = —3 / do {(n-.z)z(n-v) —87"2}

where n is the unit normal to the interface pointing toward the plasma and
B, is the unperturbed vacuum magnetic field. From this equation it follows
at once that if (n-w)|By|? < 0, and so the magnetic pressure increases with
distance from the interface, then §W s is positive and consequently §W > 0
(even if v-& # 0) and the system is stable. (Note that §Wy > 0.) Recalling
Eq. (12) also implies that the system is stable if the plasma interface is
everywhere concave toward the vacuum. On the other hand if the interface
is convex W s becomes negative, since it can be shown that®® the positive
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contribution of §Wy can be made negligible when compared with [§Wg|,
" thereby showing that the system is unstable. As in the gravitational insta-
bility, the wavy deformation will grow to a flute along the lines of force. The
stable configuration'in which the plasma is everywhere concave toward the
vacuum can be realized by a cusped magnetic field. Confinement by a
cusp-type magnetic field has been extensively investigated by Grad et al.,
who proved that the system is stable even against perturbations of finite
amplitude.®*=* The disadvantage of this system is that the cusp is leaky.
We now proceed to a discussion of the case in which a magnetic field
exists in the plasma. Suppose that the field has no shear, so that interchange
of lines of force is possible in the manner considered in the case of a gravita-
tional instability. In this new problem, however, the lines of force are no
longer uniform but are curved, and we shall now need to give a more
elaborate explanation. With Rosenbluth and Longmire,®* let us assume
that the plasma pressure is so small compared to the magnetic pressure
that the magnetic field may be assumed to be nearly equal to the vacuum
field. Any distortion of the field then increases its energy since the vacuum
field is the lowest energy state.’?> Hence we again see that a perturbation
which leaves the magnetic energy unchanged is one which is most likely
to lead to instability. In order to find the displacement let us consider the
change of the magnetic field energy caused by the interchange of two flux
tubes which we shall denote by I and IT. Without loss of generality we shall
consider a flux tube of a constant cross section, say A. Then the magnetic
energy in the tube is equal to
1 \ 1 1 @L
gr BdTN§B2AL—§;TJ
in which L is the length of the tube and ¢ is the flux which is defined by the
relation

¢ = BA.

Suppose now that the plasma occupying flux tube I moves into tube II
while the plasma occupying flux tube II moves into tube I, so that an

30 J. Berkowitz, H. Grad, and H. Rubin, Magnetohydrodynamic stability. Proc. U.N.
Intern. Conf. Peaceful Uses Atl. Energy, 2nd, Geneva, 1968 Vol. 31, pp. 177-189. Columbia
Univ. Press (1. D. S.), New York, 1959.

3t J. Berkowitz, K. O. Friedrichs, H. Goertzel, H. Grad, J. Killeen, and H. Rubin,
Cusped geometrics. Proc. U.N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva, 1958
Vol. 31, pp. 171-176. Columbia Univ. Press (I. D. 8.), New York, 1959.

32 H. Grad, Containment in a cusped plasma system. Progr. Nucl. Energy, Ser. X1
2, 189-200 (1963). Also see the references in this paper.

2 This can be seen from the fact that the variation of the magnetic energy 5fB? dv

= 0 together with the condition V + B = 0 leads to the equation V X B = 0.
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interchange between the two flux tubes occurs. Since the magnetic flux
is conserved as the plasma moves, in the final state, the magnetic flux
in tube I is equal to that of the plasma which was initially in II. We denote
this by ¢11 and similarly the flux in tube IT becomes ¢;. Hence the change
in the magnetic energy is given by

1 {¢IZLII ¢IIZLI} 1 {d’IIZLII + ¢12LI}'
8r | An A 8r | Au Ax

Therefore if ¢1 = ¢11, namely, if the fluxes are equal, the magnetic energy
does not change. In this case the difference between the volumes of the two
tubes results in a change in the final pressure. Denoting the final pressure
in the tubes I and II by p’1 and p’11, respectively, we then have the follow-
ing expression for the change in the internal energy,

oW = «y—i—._l {(@1V1+ puVu) — (piVi + puVm)}. (15)

On the other hand, the adiabatic compression law,

pV7 = constant

yields the relations

Pt = (puVu")/Vy
and

pu = (mVr)/Vu.

Introducing these expressions into Eq. (15) and assuming that the two
tubes are neighboring ones so that piy = p1 + Ap and Vi = Vi + AV
we obtain

W = AV([Ap + (vp/V) AV], (16)

in which the subscript I has been omitted and the terms higher than second
order with respect to Ap and AV have been neglected. Therefore, if

AV[Ap + (vp/V) AV] <0, (17
the system is unstable with respect to such an interchange. Grad* proved:

AV[Ap + (vp/V) AV] > 0 (18)
is necessary and sufficient for the stability. Since V.= AL = ¢L/B, and ¢is
constant, AV = ¢ A(L/B). Introducing U through the equation3®

dl
B’
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with dl the line element along the tube, we have
V =—¢U = ¢|U| and AV = —¢ AU.
' Hence, in-terms of U, condition (17) takes the form
AU Ap > vp (AU)¥/|UI. ¢y

Namely, if this condition is valid then the equilibrium is unstable.
Let us now consider the boundary condition of type II. At the boundary
of the plasma p becomes zero, and so condition (17) then reduces to

AU Ap >0
or to

AU Ap
'A—d) Ad > 0.

In an axially symmetric system, p tends to zero as ¢ increases and hence
Ap/A¢ < 0. Therefore, if AU/A¢ < 0 or, equivalently, if

a/%>o (19)

(that is to say if [dl/B increases outward), the system is unstable. Hence
if B decreases toward the boundary and the magnetic lines of force
simultaneously lengthen, the system is unstable, as might be the case for
an entirely convex boundary. Since under the present conditions the
magnetic field at the boundary may be assumed to be identical with the
vacuum field, condition (19) may be written in the form

dl
f R?B_é <0, (20)

in which R is the radius of curvature of the line of force under consideration
and r is the distance of the line from the axis of symmetry. The radius of
curvature R is positive if the center of curvature lies outside the plasma.
The derivation of this condition has been given by Rosenbluth and Long-
mire.2%

If the plasma boundary is everywhere convex so that R < 0, condition
(20) is obviously valid [see Eq. (13)]. In the magnetic mirror configuration
shown in Fig. 10 the boundary consists of both the convex and the concave
portions, and it is necessary to integrate over the line of force in order to
verify condition (20). The result of the calculation shows that the negative
contribution dominates the positive one, resulting in the inequality
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~—=
F1a. 10. Magnetic mirror.

Jdl/RrB? < 0, and therefore the system is unstable. A full discussion of
this has been given by Rosenbluth and Longmire?® and by Thompson.%

The order of magnitude of the growth rate of the instability, ||, may
be estimated as

lo| = Vgesk, (21)

where gess is given by Eq. (14).3%* Assuming that p = p, = 1pv}, where
v is the thermal velocity of the ions, we find that

lo| = ve(m/Rro)', (22)

in which we have used the approximation k =~ m/r,, where r, is the mean
radius of the mirror and m is an integer characterizing the azimuthal mode.
This instability is stabilized by the effect of conducting end plates in just
the same way as was the gravitational instability. Inserting the above gess
into Eq. (8¢) and putting k;! = L (the length of the mirror) gives the result

p _ 1R
B <mIv

(23)

which exhibits the properties of the exact calculation performed by Berko-
witz, Grad, and Rubin®* showing stabilization for a sufficiently low
pressure.

For sufficiently large R =~ r,3/r%, the growth rate is small, and we have
|w|/wic = (r:1/70)? and hence stabilization due to finite ion Larmor radius
may be expected. The stability condition obtained by Rosenbluth and
others®2 is

\/ m 7_”-(; TiL

m—1NR "7’

# W. B. Thompson, ‘“Plasma Physics,” Chap. 6, Section 2. Macmillan (Pergamon),
New York, 1963.

#a All the values in the expression should be considered as the averages taken over
lines of force.

# H. Grad, Some new variational properties of hydromagnetic equilibria. Phys.
Fluids 7, 1283-1292 (1964).
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where the m = 1 mode is not stabilized. This is due to the fact that the
electric field is constant for this mode and, consequently, the ions and
electrons both experience the same electric field. It was found recently
by Ioffe and Yushmanov® that superimposing the mirror and a cusped
field produces a remarkable stabilizing effect. The cusped field was in
fact produced by placing wires along the lines of force of the mirror. This
stabilizing effect seems to be due to the occurrence of a minimum of the
magnetic field strength |B|. In an ordinary mirror the magnetic field
increases along the magnetic lines of force and decreases radially outward,
but, when a cusped field is superimposed, at the minimum point the result-
ing field increases in both the radial and the axial directions.

As has already been explained, the surface of a plasma in which the
pressure is isotropic must be a magnetic surface generated by lines of force.
However, a magnetic isobar, a surface of constant |B|, will, in general,
cut lines of force, as is the case at the ends of the mirror, so that it cannot
be a magnetic surface. Hence, for the confinement of a plasma by means of
a magnetic isobar, an anisotropic pressure is essential. The theory of
plasma confinement and stability in a field with minimum |B| has been
discussed by Taylor®= on the basis of the CGL approximation. He then
derived the results more generally for adiabatic mirror machines in terms
of an equilibrium distribution function.®*3* Recently Furth and Rosen-
bluth¥ have shown by example that, for closed configurations with an
isotropic pressure p, the condition vp:-vB < 0 can be met in the average
sense, that is,

dl
Vp-v B > 0.

So far we have considered the cases in which the right-hand side of the
inequality (I) has been neglected. However Kadomtsev and others®—4

3 M. S. Ioffe and E. E. Yushmanov, Experimental investigation of plasma instability
in a magnetic mirror trap. Nuel. Fusion: Suppl. No. 1, 177-182 (1962).

se J B. Taylor, Phys. Fluids 6, 1529-1536 (1963). This paper is included in the
present volume (p. 215).

3 J, B. Taylor, Equilibrium and stability of plasma in arbitrary mirror fields. Phys.
Fluids 7, 767-773 (1964). This paper presents a rather more general derivation of the
results contained in the paper by Taylor.%2

32 R. J. Hastie and J. B. Taylor, Maximum plasma pressure for stability in magnetic
" fields with finite minima. Phys. Fluids 8, 323-331 (1965).

37 H. P. Furth and M. N. Rosenbluth, Closed magnetic vacuum configurations with
periodic multipole stabilizations. Phys. Fluids 7, 764-766 (1964).

# B, B. Kadomtsev, Plasma physics and the problem of controlled thermonuclear
reactions. Progr. Nucl. Energy, Ser. IV 8, 17-25 (1960); Magnetic traps for plasmas.
Progr. Nucl. Energy, Ser. IV 3, 417-430 (1960).
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have shown some stable configurations in which p and U can be varied
sufficiently to ensure that the inequality AU Ap + yp(AU)?/U < 0 is
valid. For example, in an axially symmetric system let dp/dr < 0 and
dU/dr < 0, then the stability condition reduces to

dp/dr = dU/dr ,
T +-———U > 0. T

Thus the system is stable with respect to interchange provided p does not
decrease faster than |U[™ with increasing r. The situation is closely
analogous to that of thermal convection produced by an inhomogeneous
temperature distribution when subject to the influence of gravity. As may
be deduced from the convection process in a fluid heated from below, if
the temperature increases vertically upward then convection does not
occur and the fluid is stable. This is, however, only a sufficient condition.
The necessary condition may be stated as the following requirement: As
an element at height 2 moves upward to a new position z + £, the resultant
force acts downward, and consequently the mass density there must in-
crease or, equivalently, the specific volume V must decrease giving

V(p” Sl) - V(p’v S) > Os

where p’ is the pressure at z + £ and S’ and S are the entropies at z + ¢
and z, respectively. From this inequality it follows that

ov) (2 4 a7 () )
<ﬁ>p<az +ch <6T)P >0

where the suffix p signifies that pressure remains constant.
Since most substances expand on heating, and so (8V/dT), > 0, the
stability condition becomes

oT . gT a_I_f) "
25 (%), >0 @

Hence, even if dT/9z < 0, the system is stable provided the temperature
decrease satisfies the above inequality. We find here a close similarity

39 8. 1. Braginskij and B. B. Kadomtsev, Stabilization of a plasma by the use of
guard conductors. Progr. Nucl. Energy, Ser. I11 3, 356-385 (1960). :
4 B. B. Kadomtsev and S. I. Braginskij, Stabilization of a plasma by non-uniform
magnetic fields. Proc. U.N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva, 1958
Vol. 32, pp. 233-238. Columbia Univ. Press (I. D. S.), New York, 1959.
4 See L. D. Landau and E. M. Lifshitz, “Fluid Mechanics,” §4. Macmillan (Per-
gamon), New York, 1959.
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between the inequalities (I’) and (I’’). In this sense this interchange in-
stability is often called the convection instability.

Let us now proceed to a discussion of the instabilities occurring in the
pinched discharge. Suppose that a current flows along a surface of a
cylindrical plasma column so that an azimuthal magnetic field is produced
in the vacuum surrounding the plasma surface. Let us first assume that the
magnetic field-does not exist inside the plasma. The field and the current
produce an inward Lorentz force upon the plasma which is balanced by
the mechanical pressure difference across the plasma surface. The equi-
librium thus obtained is not stable since the cylindrical column is obviously
convex to the vacuum so that the center of curvature of the lines of force
lies inside the plasma. In fact when we consider a radial perturbation
normal to the magnetic field the discussion closely parallels that for the
gravitational-type instability. Figure 11 illustrates a vertical section of the
plasma column and the surrounding magnetic lines of force. The plasma
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boundary is shown as the two solid lines. Owing to the curvature of the
lines of force the effective force is directed outward from the plasma. Hence
the perturbation shown by the dotted lines leads to an interchange in-
stability (see Fig. 1). The growth rate is given by Eq. (14) and for an
isotropic pressure, p;, = p, = p, it becomes \/2pk/pR. Since, to within
an order of magnitude, k =~ 1/R =~ 1/r,, where r, is the radius of the

column, we find that
2p
lw| = \/71)/7'0 = a/To,

where a is the sound velocity for a compressed plasma. Namely, the
growth rate is roughly equal to the inverse of the transit time of a sound
wave across the radius of the column. Since for a high temperature pinched
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plasma 7, is usually small and a is large, || is large. In other words, unlike
the gravitational and mirror instabilities, an interchange instability in a
pinched discharge has a large growth rate. As a result, when r, is sufficiently
small, the plasma column is broken by the fast inward motion of the
instability. In this sense such an instability is often called a sausage-type
instability.

The stabilization of a sausage-type instability may be achieved by
applying an internal shear field in just the same way as in the gravitational
instability. Suppose that inside the plasma a uniform magnetic field B, is
superimposed along the column axis. Then, due to the perturbation illus-
trated in Fig. 11, an Alfvén wave propagates along the applied uniform
field and, from Eq. (8¢’), we have

2
s @)+
P To

where b is the Alfvén speed and is equal to \/B.%/4mp. Hence, by means
of the condition
B B¢

p+81r T 8’

where B, is the vacuum azimuthal field, the stability condition is given by
B2 > }Bg.

However this shear stabilization is not effective for long wavelength per-
turbations of the kink fype, which are associated with the displacement of
the column as a whole.

Suppose that the plasma column is bent slightly, as shown in Fig. 12.
The density of lines of force surrounding the column then becomes higher
on the concave side than on the convex side of the column, and, conse-
quently, the azimuthal vacuum field exerts a stronger magnetic pressure

F1a. 12. Kink-type instability.
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on the concave side thereby increasing the curvature. On the other hand
the bending of the internal uniform magnetic field produces a magnetic
tension which acts as a restoring force which competes with the destabiliza-
tion produced by the azimuthal magnetic field. The result of computations
shows that for long wavelength bending the former effect dominates the
latter and that the system is unstable. In order to estimate these forces we
first note that the Lorentz force can be expressed as the divergence of the
magnetic part of the Maxwell stress tensor,

T — é (B.B, — 1B%.).

Hence the volume force K resulting from the Lorentz force which acts on
the whole plasma column takes the form

K = [ divTodr = [ Tnds,

where the integration is extended over an arbitrary closed volume in the
vacuum enclosing the plasma column, n is the unit normal to the surface
of the volume directed outward, and do is a surface element. By means
of this equation the force acting upon the boundary due to the change of
the vacuum magnetic pressure can be estimated as follows.!?

Let the wavelength of the bending be A. Then the resulting change of
the vacuum magnetic field would be appreciable in a region within a dis-
tance N\ of the plasma boundary.#* Hence it is convenient to choose the
domain of integration as the cylinder of radius A surrounding the column,
so that the contribution of the perturbed field over the cylindrical boundary
of the domain may be neglected as being small. (The contribution of the
unperturbed field balances the unperturbed total pressure inside the
plasma.) The upper and lower boundaries of the domain of integration
may be specified as being the two planes separated by a distance A and
passing through the center of curvature of bending (cf. Fig. 13). The force
resulting from the perturbed vacuum field is then given by the integral
JT™.n do over the two end planes outside the cross sections of the column.
For the component of force perpendicular to the axis of the column the
integrands reduce locally to

T:(c?)nz = - (302/87") ()‘/2R)’

where R is the radius of curvature of bending and the z axis is taken per-
pendicular to the column axis and is directed positively toward the center

42 Note that the solution of V2 = 0 is given by d?pr/dx? — k2pr = O for perturba-
tions in the y direction, i.e., for ¢ ~ grei*v.
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F1a. 13.

of curvature; the expression being the same on either plane. (Since B, is
orthogonal to the z axis, T{ and T'{® are zero.) Hence the integral may be
approximated by

- [ A
E‘ [0 Bgrdr = — EB 792 B g2 ln()\/ro),

where By, is the value of By on the boundary. This equation indicates that
the perturbation of the vacuum field induces a force in a direction opposite
to that of the curvature, that is, directed toward the convex side. The
strength of this force per unit length becomes

(Z—;;) B2 In(\/7y).

The restoring force resulting from the B, field inside the plasma is given
by integrating over the cross sections of the column on each end plane.
Noting that by means of the frozen-in condition the internal magnetic
lines of force are always aligned with n we find, in this case, that the
integrand is positive, and so the resultant force acts to restore the dis-
placement. Instead we may, of course, estimate the force as the magnetic
tension (1/4w)B.2/R when we find that the total magnetic tension acting
upon the column is (B.,2/4R)r¢ per unit length. As a result we obtain the
stability condition

B2 — B2 In(\r9) 2 0
or
(B./Bg.)* Z In(\/70).
However the condition

p + B.*/8m = Bol?/8

MHD STtABILITY AND THERMONUCLEAR CONTAINMENT



MHD STABILITY AND THERMONUCLEAR CONTAINMENT 33

implies that Bs, > B., and so the internal shear field B, cannot stabilize
the pinch against long wavelength kinks.

To stabilize a kink instability we must consider the following possi-
bilities:

(1) Superposition of an external axial magnetic field
(2) Placing a coaxial conducting wall around the vacuum field.

The first method is not effective however due to the fact that there exists
a perturbation mode having the same pitch as the external magnetic field
so introduced. This is given by 2#rB./Bs or, in terms of the axial current
I that can be introduced through the equation By = 21/cr, it ‘can be
written as cxr?B./I. Since the pitch of the disturbance produced by the
perturbation cannot exceed the length L of the pinch itself, the stability
condition becomes a condition for the current I; that is L < exr?B./I or
I < cnr?B,/L. Namely, if the discharge current I exceeds the critical value
I, = cxr®B,/L, then the instability will appear. This result was found
independently by Kruskal and Shrafranov and has since received experi-
mental confirmation.*»#4 The critical current I. is often called the
Kruskal-Shrafranov limit. The kink may however be stabilized by utilizing
the effect produced by a conducting wall. This can be easily understood
by noting that the magnetic pressure increases on the convex side as it
approaches the wall. However, the radius of the conducting wall must be
kept less than five times the radius of the column as was shown by Taylor®s
and others. 24

The problem of a stabilized pinch has been discussed by many authors,
and it is not easy to give a complete survey. Instead, we shall now briefly
introduce the relevant papers included in this edition and mention some of
their principal references. Kruskal and Schwarzschild?* discussed the kink
instability corresponding to m = 1 in the azimuthal eigenmode (m), in
the absence of internal and external axial fields and of a conducting wall.
Kruskal and Tuck* have taken into account the effect of both an internal

4b M. D. Kruskal, J. L. Johnson, M. B. Gottlieb, and L. M. Goldman, Phys. Fluids
1, 421-429 (1958). This paper is included in the present volume (p. 139).

42 ]J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, Some stable
hydromagnetic equilibria. Phys. Fluids 1, 281-296 (1958).

4 G. G. Dolgov-Saveliev, V. S. Mukhovatov, V. S. Strelkov, N. N. Shepelev, and
N. A. Yavlinskii, Investigation of a toroidal discharge in a strong magnetic field. Proc.
Intern. Conf. Ionization Phenomena Gases, 4th, Uppsala, 1959 Vol. I1, pp. 947-953.
North-Holland Publ., Amsterdam, 1960.

42 R, J. Tayler, Proc. Phys. Soc. (London) B70, 1049-1063 (1957a). This paper is
included in the present volume (p. 149).

# M. D. Kruskal and J. Tuck, Instability of a pinched fluid with a longitudinal
magnetic field. Proc. Roy. Soc. (London) A246, 222-237 (1958).
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and an external axial field and have investigated all possible modes of
perturbation [m = 0 (the sausage), m = 1, and m > 2]. However, the
effect of a wall was not considered. The detailed stability condition for a
cylindrical pinch with a coaxial conducting wall was obtained by Taylor,»
Rosenbluth,* Shrafranov,’® and Chandrasekhar and others,*” who gave
conditions expressed in terms of the ratio of the axial field strength to the
azimuthal field strength and the ratio between the radius of the pinch and
the coaxial wall as parameters. The conditions are applicable to a pinch
having an infinitely thin surface layer of current. It was pointed out by
Rosenbluth*2 that taking into account the thin but finite width of the cur-
rent layer results in a new type of instability called the surface instability.

Inside the current layer the magnetic field changes continuously so
that the lines of force may be described in terms of a set of spirals with
a pitch

B = Bo/’I‘BZ,

which varies continuously as a function of radial distance. On a certain
cylindrical surface in the current layer consider a spiral displacement of
the plasma having the same pitch as the lines of force. The lines of force
would not be bent by such a displacement, and so we have found yet
another perturbation which is likely. to produce instability. In such a case
the stability condition becomes more complicated since it then depends
on the structure of the magnetic field in the current layer, and no stable
layer exists if the external field is in the same direction as the internal
field. The surface on which the matching of the pitches occurs corresponds
to a singular point in the Euler-Lagrange equation of the variation integral,
and the region interior to the singular surface becomes separated from the
region exterior to the surface. As a result different stability conditions
must be satisfied in each region. In general the stability condition in the
interior region may be satisfied more easily than the stability condition
in the exterior region, and so it appears that the system is stable in the
interior region and that the instability is confined to the exterior region.
The growth rate is small and is proportional to the width of the surface

layer, and it appears that a finite Larmor radius effect could modify the
result. 2=

4% M. N. Rosenbluth, Stability of the pinch. Los Alamos Rept. LA2030, 1956.

4 V. D. Shafranov, On the stability of a cylindrical gaseous conductor in a magnetic
field. J. Nucl. Energy II b, 86-91 (1957).

47 8. Chandrasekhar, A. N. Kaufman, and K. N. Watson, The stability of the pinch.
Proc. Roy. Soc. (London) A246, 435-455 (1958).

42 M. N. Rosenbluth, Proc. U.N. Intern. Conf. Peaceful Uses At. Energy, 2nd,
Geneva, 1958 Vol. 31, pp. 85-91. Columbia Univ. Press (I.D.S.), New York, 1959. This
paper is included in the present volume (p. 205).
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From the discussion of the surface layer instability it may be expected
that a similar instability occurs for a thick current layer. The necessary
condition obtained by Suydam*™ for the m > 0 mode of a cylindrical pinch
to be stable is that

(r/4)(8'/B)* + 8xp’/B. > 0

at every point in the plasma. Here the prime denotes differentiation with
respect to the radial coordinate r. This condition implies that if the pres-
sure varies steeply then a greater spiral pitch is required. The necessary and
the sufficient condition has been given by Newcomb*¢ who in turn derived
the Rosenbluth condition for a thin surface layer of current. Though the
necessary and sufficient condition for the stability of a cylindrical pinch is
not intuitively obvious, the variational approach leads to the following
simple form of the sufficient condition:

By d

T ;i—’;' (TBO) < 0.
Noting that

ld(TBo) _ .

rodr 4mj-,

and integrating this equation, we find that the above inequality reduces to

Li <o
where I, is the total current and is equal to [4ar%,dr. Namely, if the
current density in the plasma is opposite in sign to the total current then
the system is stable. Such a configuration is realized in the so-called hard
core pinch, in which a current I, flows through a central core and returns
through a hollow shell of plasma. Hence, the direction of the current density
flowing through the plasma at a distance r from the center of the core is
opposite to that of the current flowing through the core itself.*:#"¢ On the
other hand, the total current passing through the circular surface of radius
r centered on the core is equal to the sum of the current densities flowing
through the hollow plasma inside the circle and the current I, flowing
through the core itself. Therefore the sign of this total current can be made
opposite to that of the current density at a point inside the circle if, for
example, |I,| is sufficiently large.

# B, R. Suydam, Proc. U.N. Intern. Conf. Peaceful Uses Al. Energy, 2nd, Geneva,
1958 Vol. 31, pp. 157-159. Columbia Univ. Press (I.D.S.), New York, 1959. This paper
is included in the present volume (p. 165).

47c W, L. Newcomb, Ann. Phys. (N.Y.) 10, 232-267 (1960). This paper is included
in the present volume (p. 169).
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For the limit in which the plasma occupies a thin tubular layer the
necessary and sufficient conditions for stability have been obtained in a
much simplified form by Newcomb and Kaufman.® By specifying some
further parameters in the results they also discussed the necessary and
sufficient conditions for the stability of a columnar pinch and compared
the results with the tubular pinch.

In spite of this absolute stability of the hard core pinch a complete
stabilization has not been observed, and it is possible that effects such as
resistivity which cannot be taken into account in ideal magnetohydro-
dynamics may give rise to further instabilities.

In fact in the limit of very small conductivity it has already been shown
that instabilities may develop due to the rapid penetration of the magnetic
field into the plasma. The theory is in good agreement with an experiment
using liquid mercury when it is suitably modified to include the effect of
surface tension.*® Assuming that the conductivity is very large within a
thin boundary layer beyond which the plasma is of low conductivity
(thereby being completely decoupled from the magnetic field), Jukes has
also shown theoretically that a slip instability is possible. It is interesting
to note that in his results the unstable mode is given by the condition
kX B = 0.

A most comprehensive discussion for high conductivity plasmas can
be undertaken on the basis of the results of Furth et al.** First of all we
note the tearing mode which results from the structure of the sheared
magnetic field. As may be seen from Fig. 5, this mode is given by

k-B=0

which, in the superposed axial and azimuthal magnetic fields, takes the
well-known form

’-;’-B,+k3,=o.

Since the tearing mode is suppressed for short wavelength perturbations,
it can be stabilized if Bg/B, is sufficiently large. A similar result has been
obtained independently by Rebut.* Instead of explicitly taking into account
the effects of finite conductivity, he first finds a helical buckling equilibrium
neighboring a cylindrical equilibrium. He then deduces that whenever

48'W. A. Newcomb and A. N. Kaufman, Hydromagnetic stability of a tubular pinch.
Phys. Fluids 4, 314-334 (1961).

9 R, J. Bickerton and I. J. Spalding, The hydromagnetic stability of the hard core
pinch with small electrical conductivity. J. Nucl. Energy: Pt. C 4, 151-158 (1962).

5 P, H. Rebut, Non-magnetohydrodynamic instabilities in plasmas of high current
density. J. Nucl. Energy: Pt. C 4, 159-168 (1962).

MHD STABILITY AND THERMONUCLEAR CONTAINMENT



MHD STABILITY AND THERMONUCLEAR CONTAINMENT 37

these exist the discharge is unstable. However, in the framework of ideal
magnetohydrodynamics, the displacements necessary to attain these
equilibria involve discontinuous changes of the magnetic field such as
cutting and rejoining lines of force, and they only become possible for
a plasma if we allow finite conductivity effects. This may also be seen from
the work by Furth et al.'® Namely, outside the small region where the
motion of the plasma and the magnetic field are decoupled, we must seek to
find those ideal magnetohydrodynamic solutions which cannot be joined
without first taking into account finite conductivity effects.

The explicit statement for the hard core pinch is as follows. The pinch
will be stable if

that is if Thard core/Iplasma > R/ 8, Where Inard core and Ipiasms are the currents
in the central rod and the plasma, respectively, R is the radius of the dis-
charge channel, and § is its thickness. If this condition is not satisfied then
the unstable mode mentioned above becomes possible at the radius at
which dp/dr = 0. )

The instability observed in experiments® corresponds to the predicted
tearing mode while the growth rate is also in agreement with the theoretical
prediction by Furth et al.

The rippling mode due to the spatial variation of electrical conductivity
is also possible, but for high temperature plasmas it is likely that this may
be stabilized by the effect of thermal conduction.

The systems which have so far been discussed are open-ended, and for
the real containment of a plasma we are led to consider toroidal configura-
tions. As has already been remarked,-# the simplest toroidal configuration
in which the lines of force close themselves along a long path around the
torus cannot be an equilibrium configuration. This may be seen very simply
by noting that the drifts produced by the curvature of the lines of force
result in charge separation thereby causing the plasma to be pushed to
the walls. However this charge separation is canceled out by twisting the
lines of force in such a manner that they close themselves after many turns
around the torus.

Let a line of force start at a point P, on a cross section of the torus and,
after traversing a long path around the torus, let it return to another point
P on the cross section. On the cross section we thus have successive rota-
tional transforms which cause all such points to lie close to a single closed

K. L. Aitken, R. J. Bickerton, P. Ginot, R. A. Hardcastle, A. Malein, and P.
Reynolds, The stability of linear pinch and hard core discharges. J. Nucl. Energy: Pt. C
6, 39-69 (1964).
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curve. As a result, after many turns around the torus a single line of force
will generate a magnetic surface the center line of which is called the mag-
netic axis. It should be noted that, as in the case of Tokamak,®-5 the rota-
tional transform can be realized even in a simple torus provided a plasma
current flows along the magnetic field. It is well known that the rotational
transform is most simply produced by twisting a torus into a figure eight
in the manner proposed by Spitzer.!'® However in this case the rotational
transform is constant on the cross section, and so the interchange instability
is possible. To overcome this instability the rotational transform may be
varied with the radial distance from the magnetic axis so that the magnetic
field has a shear in the radial direction.! It should however be emphasized
that under this shear stabilization a kink-type instability®s will appear as
the current exceeds the Kruskal limit which is then given by a slight
modification of the expression already given for a cylinder.!1:41P.42.43.54 The
general analysis of the necessary and sufficient stability conditions for the
toroidal configuration is complicated, but an extensive study has neverthe-
less been made by several authors.®—5

Finally we note that for a collisionless plasma a new type of instability
associated with an anisotropic pressure can be predicted. Namely the
Alfvén wave and the slow compressive hydromagnetic wave becoming
unstable. The former instability occurs when p; >> p 1 and has been called
the fire-hose instability,’** while the latter is called the mirror instability
and takes place for sufficiently large p, .12

2 A. D. Sakharov, ‘“Plasma Physics and the Problem of Controlled Thermonuclear
Reactions,” Vol. 1, p. 21. Macmillan (Pergamon), New York, 1961.

3 E. P. Gorbunov, G. G. Dolgov-Saveliev, K. V. Kartashev, V. S. Mukhovatov,
V. 8. Strelkov, M. N. Shepelov, and N. A. Yavlinskii, Experiments in Joule heating of a
plasma in a strong magnetic field (in Russian). Nucl. Fusion: Suppl. No. 3, 941-948
(1962).

%2 S, Yoshikawa, W. L. Harries, K. M. Young, K. E. Weimer, and J. L. Johnson,
Hydromagnetic instability in a stellerator. Phys. Fluids 8, 118-134 (1965).

5 C. Mercier, “Critére de stabilité d’un systéme toroidal hydromagnetique en pres-
sion scalaire. Nucl. Fusion: Suppl. No. 2, 801-808 (1962).

5% C. Mercier, Un critére necessaire de stabilité hydromagnetique pour un plasma
en symetrie de revolution. Nucl. Fusion.1, 47-53 (1960).

5 C. Mercier and M. Cotsaftis, Equilibre et stabilité d’un plasma en symetrie de
revolution anee pression anisotrope. Nucl. Fusion 1, 121-124 (1960).

57 J. M. Green and J. L. Johnson, Stability criterion for arbitrary hydromagnetic
equilibria. Phys. Rev. Letters T, 401-402 (1961).

58 J. M. Greene and J. L. Johnson, Stability criterion for arbitrary hydromagnetic
equilibrium. Phys. Fluids 6, 510-517 (1962).

% J. M. Greene, J. L. Johnson, M. D. Kruskal, and L. Wilets, Equilibrium and
stability of helical hydromagnetic systems. Phys. Fluids 6, 1063-1069 (1962).

@ F. N. Parker, Dynamical instability in an anisotropic ionized gas of low density.
Phys. Rev. 109, 1874-1876 (1958).
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The problem of the stability of static, highly conducting, fully ionized plasmas is investigated

. by means of an energy principle developed from one introduced by Lundquist. The derivation
of the principle and the conditions under which it applies are given. The method is applied to
find complete stability criteria for two types of equilibrium situations. The first concerns
plasmas which are completely separated from the magnetic field by an interface. The second
is the general axisymmetric system.

1. INTRODUCTION

The investigation of hydromagnetic systems and their stability is of interest in
such varied fields as the study of sunspots, interstellar matter, terrestrial magnetism,
auroras and gas discharges. An excellent summary and bibliography of these
applications has been given by Elsasser (1955, 1956). The stability of hydromagnetic
systems has been extensively investigated in a fundamental series of papers by
Chandrasekhar (1952 to 1956).

The present work is concerned with those hydromagnetic equilibria in which the
fluid velocity at each point is assumed to vanish. It is divided into two parts. The
first is a development of an energy principle, originally stated by Lundquist (1951,
1952), for investigating the stability of such systems. The second part consists of
the application of this principle to obtain a number of specific results for such
systems.

The ‘normal mode’ technique is the usual method for the investigation of stability
in many systems, mechanical, electrical, etc. It consists of solving the linearized
equations of motion for small perturbations about an equilibrium state. The system
is said to be unstable if any solution increases indefinitely in time; if no such solution
exists, the system is stable.

The energy principle technique, on the other hand, depends upon a variational
formulation of the equations of motion. It was first used by Rayleigh (1877) in the
calculation of the frequencies of vibrating systems. Its advantage lies in the fact
that if one seeks solely to determine stability, and not rates of growth or oscillation
frequencies, it is necessary only to discover whether there is any perturbation which
decreases the potential energy from its equilibrium value. This makes practical
the stability analysis of much more complicated equilibria than the normal mode
method.

In §2 are presented the basic equations for a plasma and the conditions under
which they are valid. These equations are then linearized in the Lagrangian repre-
sentation. In §3, the energy principle is stated and derived from the normal mode
equations for the system. The relation between the energy principle and Rayleigh’s
principle (Rayleigh 1877) is discussed.
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In §4, some convenient methods for applying the energy principle to general
problems are described. In §5, the problem of the stability of a fluid in which the
magnetic field is zero and which is surrounded by a vacuum magnetic field is solved.

Section 6 treats the stability of a general axisymmetric system. The problem is
reduced essentially to the solution of an ordinary second-order eigenvalue equation.
In certain limiting situations the problem is solved completely.

2. BASIC CONSIDERATIONS

Consider a plasma of electrons and of one kind of positive ion which is governed
by the following system of equations:

p%:—gradp+ij—pgrad¢, (2-1)
g—€+div(pv) =0, (2-2)
E+vxB =0, (2-3)
(a%J' v‘grwd) (pp™7) =0, (2-4)
oB
curlE = —= (2-5)
curl B = j, (2-6)
divB = 0. (27)

Let E be the electric field, B the magnetic field, j the electric current density,
p the mass density, M the ion mass, p the pressure, ¢ the external potential energy
per unit mass, y the ratio of specific heats, e the magnitude of the electronic charge
and v the fluid velocity. The equations are written in rationalized Gaussian units
withc = 1.

The above equations apply if the following conditions are satisfied: (i) Quadratic
termsin v and j are negligible. Physically, this is equivalent to the requirement that
the macroscopic speed v is small compared to sound speed ¢, = (yp/p)? or to hydro-
magnetic speed ¢, = B/p. (ii) The system is locally electrically quasi-neutral.
This occurs if the Debye shielding distance A;, = (k7./ne?)? is small compared to
every characteristic dimension L of the system. (iii) The ratio of the electron mass,
m to the ion mass, M is negligible compared to unity. (iv) The matter stress tensor
is isotropic. This occurs if there are many collisions during a characteristic time, ¢,.
The effect of relaxing the requirement of isotropy of the stress tensor is considered
in §3. (v) The displacement current is negligible. This holds if ¢, is small compared
to the speed of light. (vi) Heat flow by conduction, along the lines of force as well
as across the lines, is negligible. This implies the adiabatic law (2-4). It is shown in
§3 how this law must be modified if conditions (iv) and (vii) are not satisfied.
(vii) Ohm’s law in the form of equation (2-3) is valid.

Spitzer (1956) gives the complete generalized Ohm’s law which may be written
in the form

M moj 1 Mov
) = - o
E+vxB egradqﬁ 7j 35 grad p; . 0.
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The electron inertia term (m/ne?)?oj/ot is negligible when (¢,)! is small compared
to the electron plasma frequency w, = (ne?/m)}. The ion inertia term (M/e) 9v/ot
is negligible when (t,)~! is small compared to the ion Larmor frequency eB/M. The
electrical resistance term #j is negligible when the time characteristic of relative
diffusion of matter and magnetic flux is long compared to ¢,. The terms involving
grad ¢ and gradp; are negligible when a;c,/Lv<1, where a; is the ion Larmor
radius. Spitzer has pointed out that this criterion is not satisfied in general for fully
ionized plasmas. In particular, for equilibrium states in which v is zero, the criterion
fails. The effect of keeping these terms is discussed in § 3 where it is shown that the
stability criteria are not affected by their inclusion.

The set of equations above implies relations between quantities on adjacent sides
of an interface, either interior to the fluid or between fluid and vacuum. Denote by
n the unit normal to the interface, by K the surface current density, and by (X') the
increment in any quantity X across the boundary in the direction n. For a fluid-
fluid interface the relations are

(p+4$B%) =0, (2-8)
n.{v)=0, (2-9)

n x<{E) = n.v(B), (2-10)
n.(B)=0, (2-11)
nx(B) =K. (2-12)

For a fluid-vacuum interface equation (2-9) is meaningless, but the remaining
relations apply with v taken to be the fluid velocity.

The region of interest can often be considered surrounded by a rigid, perfectly
conducting wall. At such a boundary the appropriate conditions are

nxE =0, (213)
n.9BJot = 0, (2:14)
n.v=0. (2+15)

A further condition which must be satisfied at any interface carrying a sheet
current, but no sheet mass, is that the lines of force of the magnetic field lie in the
interface. This arises from the fact that refraction of the lines of force would give
rise to infinite accelerations in the surface due to the unbalanced tangential forces.
Throughout this paper, only surfaces of discontinuity will be considered at which
the condition n.B = 0 is satisfied. This is the boundary condition of interest, for
example, for a confined plasma in which gravitational effects are negligible.

It can be shown that the system of equations above possess an energy integral

U =fd1(§p|v|2+é |B |2+7—/—‘f—1+p¢) = constant, (2-16)

where the integration is extended over the whole domain, fluid and vacuum.

Tt is convenient in later exhibiting the energy principle for the linearized form
of the above equations to adopt a Lagrangian description of the fluid motion.
Accordingly, all quantities are now considered to be functions of r, the initial
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location of a fluid element, and of ¢, the time. Let the displacement vector E(r,, ¢)
be determined by r=ry+§, (2-17)

where r is the location of the fluid element at time ¢. Clearly E(r,, 0) is zero. Define
grad, to be the gradient operator with respect to r,. The usual chain rule of differ-

entiation yields grad = gradr,.grad,. (218)
To first order in § equation (2-18) becomes
grad = grad,—(grad,§).grad,. (2-19)

Consider systems which are passing through a configuration of static equilibrium
at time zero. The equilibrium equations are

grad, p,—jo x Bo+pogrady ¢y = 0, (2-20)
curl By = j,, (2-21)
divy B, = 0. (2-22)

The equations determining the various perturbed field quantities at r to first
order in § are determined by linearizing (2-1) to (2:6). There results on combining
(2-3) and (2-5) and integrating in time,

B = B,+ Q+E.grad, B,, (2-23)
where Q = curl, (§ x By). (2-24)

Equations (2-6), (2-2), (2-4) and a Taylor expansion of the external potential

yield, respectively,

i = Jo—[(grady ) .grady] x B, + curl,Q + curl, [(§. grad,) B,], (2-25)

P = Po—PodivyE, (2-26)
P = Po— YD divyE, (2-27)
@ = ¢o+E.grad, @y. (2-28)

The above equations are the first-order Lagrangian counterparts of (2-2) to (2-6).
Note that they involve € but not €, where a dot indicates differentiation with respect
to time. It can be shown that this property of depending on E but not  holds for
the expression of grad, B, j, p, p and ¢ to all higher orders in §. Finally, the equation
of motion (2-1) takes the form pi = FiE), (2-29)

where

F{E} = grad, [yp, divoE + (€. grady) po] + jo
x Q —Bg x curly Q + [divy(p,E)] grady @,.  (2-30)
Note that F also depends only on E and not on .
Note that (2-29) with appropriate initial and boundary conditions determines §.
Equations (2-23) to (2-28) then determines the perturbed field quantities.
The boundary conditions at an interface between a plasma and a vacuum are
given by transcribing (2-8) to (2:12) to first order §. Introduce the first-order
vacuum vector potential, A, where

E:—a—g—+ﬁo and ﬁ:curlA+ﬁo, (2-31)
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and vacuum quantities are distinguished when necessary by a circumflex. The gauge
has been chosen so that the scalar potential vanishes. Then from (2-8)

—ypodivoE+By.(Q+ [E.grad] By) = By (curl A+ [§.grad] By).  (232)
It follows from (2-11), (2-10) and (2-3) that
0y x A = — (0y.) By. (233)
Of course, A must satisfy the equation
curl (curl A) = 0 (2-34)
in the vacuum.
Equations (2-33) and (2-34) serve to determine curl, A in terms of §, so that (2-32)

is the only constraint on §. The linearized counterpart of (2-13) which holds at a
rigid, perfectly conducting wall bounding the vacuum is

fixA=0. (2+35)
At such a wall bounding a fluid, the condition is

n.g=0. (2-36)

3. THE ENERGY PRINCIPLE

On the basis of §2, it is possible in principle to follow in time any small motion
about an equilibrium state in which the fluid velocity is zero. The central problem
of this paper is to determine for a given equilibrium configuration whether such a
small motion grows in time. If we confine ourselves just to the question of the
determination of the stability of a system and do not inquire into details of the
motion, the problem may be reduced to examining the sign of the change in the
potential energy as a functional of §. It will be shown in this section that
the system is unstable if, and only if, there exists some displacement § which
makes this change in energy negative.

The demonstration demands that F ((2-30)) be a self-adjoint operator. That is,
for any two vector fields § and n satisfying (2-32)

Jaron.Feg) - f drE. Fin}. (3:1)

The self-adjointness property of F could be proved directly, but will be shown more
simply to follow from the existence of an energy integral for the linearized system in
which terms in the form of a product of € and § do not appear. Such an energy in-
tegral for the linearized system is guaranteed in the case v = 0 by the energy
integral, (2-16), for the exact equations. In fact, the kinetic energy term for the

linearized system is just . 1
K8 = 5 [dnpol 8P, (32)

while, when the potential energy terms are expanded in g, the change in the poten-
tial energy is a quadratic form 8W{g, €} which does not involve € because of the
remark following (2-28). Hence,

K{g, €} +W(E E) (3-3)
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is constant. One obtains from the equation of motion (2-29)

E =deog. F{g} = — oW
= —SWE.E) - W), (3:4)

Since & satisfies the same boundary condition as §, we can choose £ to be equal to
any arbitrary displacement v. By (3-4)

f droE.F{E) = f dr,E.FiE) (35)

and F is self-adjoint. Further the potential energy is

oW = —%fdfog.F{g}, (3-6)

as seen by replacing £ by § itself in (3-4).
Since the time does not appear explicitly in (2:29), one seeks normal mode
solutions of the form

E,(Fo, t) = (1) elent. (3+7)
The corresponding eigenvalue equation is
—0npoka = F{E,}, (3-8)

where &, satisfies the boundary condition (2-32). Since F is self-adjoint the eigen-
functions €, can be chosen to satisfy the orthonormality condition

1
EJdTopogn'Ern = 3nm' (3'9)

It is physically reasonable to assume that these eigenfunctions form a complete
set for any functions which satisfy the boundary condition (2-32). (The unimportant
special cases involving degeneracy of eigenfunctions will be consistently ignored.)
It further follows from the fact that F is self-adjoint that w? is real and thus the
phenomenon of ‘overstability’ cannot occur.

Any eigenmode with positive w% corresponds to a stable oscillation. A negative
w? corresponds to instability. Thus, in virtue of the assumed completeness property,
the necessary and sufficient condition for instability is the existence of a negative 2.

On physical grounds one expects that if d W can be made negative then the system
is unstable and therefore, there exists at least one negative w2. To show this, let
€ be a displacement which satisfies the boundary condition (2-32) and for which
0W < 0. By the assumed completeness property one can write

g = za‘ngm (3'10)
and from (3-6), (3-8) and (3-9)

8W == % Z Z'anamdeogn . F{gm}
- iZalal. @1

Thus §W can be made negative if and only if there exists at least one negative
w?. Therefore, the determination of the stability of a system is reduced to an
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examination of the sign of §W. Since the displacements § which may be employed
in §W are subject to (2-32), the energy principle as it stands is of limited utility.
It is possible to derive an extended energy principle which dispenses with this
constraint.

To this end one rewrites W as the sum of three terms, a volume integral W
extended over the fluid domain, a surface integral éWy extended over the fluid-
vacuum interface and a volume integral W, extended over the vacuum region.
There results from (2-30) and (3-6) after integration by parts, suppression of the
subscript zero and use of the conditionn.B = 0,

3W=3WF—%fdan.§[ypdjvE+§.ngp—B.Q], (3-12)
where W, = %J‘df{l Q*—j.Q xE+yp(divE)

+(divE) (§.grad p) - (§.grad ¢) div (p§)}, (3-13)

and the integral is extended, of course, over the initial volume of the fluid. Note
that the continuity of the equilibrium value of (p+%| B |?) across the boundary
implies the continuity of m x grad (p+ 4| B |?). This allows us with the help of
equation (2-32) to rewrite the surface term in (3-12) as

SW — 8W,, — 1,[dan.g{—g.grad(wﬂB|=)+g.grad(g| B2+ B.curl A}

- %fda{—(n.g)’n.grad(p+<}|B )= (n.E)#.grad (3| B |9

—(A.E) B.curl A}l (3-14)
Further, emploving (2-33) we obtain

—-fdo‘(ﬁ.g) B.curl A =fdo‘fl x A.curl A

=fd?div (A x curl A)
=fd?{| curl A|2— A . curl (curl A)}. (3-15)
Thus, in virtue of (2-34) the final form of W is
OW = Wy + 0Wg + Wy, (3-16)
where éW,, is given by (3-13),
oW, = %fd?lcurlAP (3-17)
and 8%=%fda(n.g)zn.@rad(p+§|B|2)>. (3-18)

With this form for § W, (3-16), the energy principle will now be extended to dis-
placements § which do not satisfy the constraint equation (2-32). It will be shown
that if there exist  and A which satisfy (2-33) and (2-35), but not necessarily (2-32)
and (2-34), and which make W as given by (3-16) negative, then there is a § and
and A satisfying (2-32) to (2-35) which make 0W negative. Note that for the
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unrestricted § and A, §W as given by (3-6) may differ from that given by (3-16) by
the addition of terms which represent the work done at the surface against the
unbalanced total pressure {p + % | B |%. Thus the form of §W given by (3-16) must
be used for the extended principle.

In order to find A observe first that the Euler equation resulting from the mini-
mization of 8W}, ((3-17) with the constraint conditions (2-33) and (2-35))is curl2A = 0
((2-34)). Therefore, if A does not satisfy this equation, A can be chosen to satisfy
it and certainly decrease ¢ W, thereby.

To complete the proof it remains to find €. This is accomplished by modifying §
by an infinitesimal amount. Let ¢ be a parameter of smallness and v a finite vector
in the grad p direction which falls to zero in a distance ¢ as one moves normally
away from the interface into the fluid. Write § as

E=E+en. (3-19)
To lowest order in €

div (en) = n.[n.grad (en)] - [n x (n x grad)]. (en) ~ | n |, (3-20)

since v changes rapidly in the normal direction. Thus v can be chosen so that §
satisfies (2-32). Furthermore

8W{2’E} = 3W{5+€"I,E+€'I}
= SWIE, €} + 0(e), (3-21)

since the integrands of dW{g, en} and 0 W{en, en} are bounded and are different from
zero only in a shell of thickness €. Therefore, if 0 W{g, E} is negative e can be chosen
so small that 8W {E, )} is negative. It is clear that any § and A which do satisfy the
conditions (2-32) and (2-34) can be considered to be members of the unrestricted
class of § and A. Thus, a necessary and sufficient condition for instability is that one
can find a § and A which satisfy only (2-33) at a fluid-vacuum interface and (2-35)
or (2-36) at a rigid, perfectly conducting boundary and make the potential energy,
(3-16), negative. This completes the proof of the extended energy principle.

The above considerations are closely connected with Rayleigh’s principle (Ray-
leigh 1877). In fact, it can be shown that the Euler equation of the variational

principle . SW{E,E) .
=gy “°

is just the eigenvalue equation (3-8). (Note that & represents a variation due to a
g deformation, while A is used to represent other variations.) If the form of W is
given by (3-6) then the variation in §, A, must satisfy (2-32). If, however, (3-16)
is used for § W, then the variations AA and A are subject only to equation (2-33),
and (2-32) follows as a natural boundary condition.

The utility of Rayleigh’s principle lies in the fact that when the ratio (3-22)
possesses a minimum, it can be used to estimate oscillation frequencies or rates of
growth of instability. For example, those displacements which make d W negative
can be used as trial functions in the variational principle (3-22). Even when ? is
not bounded from below as is the case in certain hydromagnetic instabilities

(3-22)
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(Kruskal & Schwarzschild 1954) Rayleigh'’s principle can still be employed to yield
information on the structure and time constant of the eigenmodes.

In practice, the examination of the sign of §W in the energy principle is carried
out in many cases by choosing a positive definite normalization condition on g and
minimizing §W. This is formally similar to (3-22). The great advantage of the
energy principle over both the normal mode technique and its equivalent, Ray-
leigh’s principle, lies in the fact that one is not restricted to the normalization con-
dition K{§,§} = 1, but can choose any convenient condition. Of course, in changing
the normalization condition one loses knowledge of the exact eigenfrequencies
but often gains the advantages of great analytical simplification. In §6, there
appear examples of alternative normalization conditions.

(a) Extension of the energy principle to more general cases

The description of a plasma given above may be inadequate if any of the con-
ditions of validity (i) to (vii) of § 2 do not hold. In many cases of interest condition
(iv), that the stress tensor be isotropic, and part of condition (vii), that the ion
pressure gradient term and the gravitational potential term in Ohm’s law be
negligible, are not satisfied. In this section the formalism is generalized to include
situations in which these conditions are no longer valid.

The new governing equations will be stated and 6 W derived. It will be found
that the inclusion of the new terms in Ohm’s law does not lead to a change in the
formula for 8W, when the stress tensor is isotropic.

In these more general cases, the equation of motion (2-1) is

p%‘tf — jxB—divp-pgrad¢ (3-23)
and the valid Ohm’s law, replacing (2-3) is
E+va—§l;;divE—%grad¢=0, (3-24)

where P is the total material stress tensor and E is the ion partial stress tensor.

To derive an equation of state for the case of an anisotropic stress tensor, consider
situations where the magnetic field is so strong that its change over an ion Larmor
radius is small. Then the matter stress t.ensor$ is approximately diagonal in a local
Cartesian co-ordinate system one of whose axes is directed along B, and is invariant
under rotations about B. That is, if e denotes a unit vector parallel to B and 1
the unit dyadic, - .
p=p,(1—ee)+pee. (3-25)

The internal energy per unit volume is given by one-half the trace of the stress
tensor. Thus, the internal energy per unit mass can be written

U=u+u, (3-26)
where U, = %‘), (3-27)
and U, =€—;. (3-28)
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If collisions are infrequent, «, and «, are independent. Assume that there is no
flow of heat and consider an element of mass contained in the element of volume
dr = dLdS, where dL is an element of length along B and dS an element of area
perpendicular to B. In a displacement § the associated fractional change in length
along a line of force is easily seen to be

2L e lEr+edl)-Em)]
= (e.gradg).e. (3-29)
The corresponding fractional change in area perpendicular to B is readily computed
by observing that it follows from d7 = dLdS and ddr/dr = div§ that
0dL 4dS  é&dr

i I T @ - AvE (8:30)
whence % =divE — (e.gradE).e. (3-31)

Thus if there is no heat flow in the course of the displacement, that is, if the dis-
placement is locally adiabatic, one can write

O(u,pd7) = é(3p,dr) = —p,dSIdL, (3-32)

O(u,pdr) = 8(p,dr)= —p,dLIdS. (3-33)
The terms on the right above represent the external work done. From these expres-
sions follow immediately the equations of state.

% = -djvg—2(e.gl‘3/dg)-e,l

op, = —2divE+(e.gradE).e.
1 .

These equations agree with those found by Chew, Goldberger & Low (1956) by an

analysis of the Boltzmann equation, employing somewhat different assumptions.
In order to derive the expression for the change in B due to a displacement g,

consider motions about a configuration of static equilibrium. For clarity the sub-

script zero is reintroduced to indicate equilibrium quantities. The equilibrium

electric field is

(3:34)

M M. o
E,= ?gra'do‘}so"'e—%dlvopi,o- (3-35)

Since E, is an electrostatic field its curl must vanish which implies that the right-
hand side of (3-35) is the gradient of a scalar.

Assume that (3-34) holds with p, and p, replaced by p;, and p,,, and note that in
order of magnitude p;, ~p;, ~ pkT;/ M. Then the change in magnitude of

(M div p;)fep
in a displacement § from equilibrium, which is not necessarily small, is approxi-
mately M KT, &
=i s .
e MLL’ (3-36)

where L is a characteristic length over which the various physical quantities change.
The corresponding change in the magnitude of v x B is

wéB, (3-37)
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where 1/w is a characteristic time of the motion. The ratio of formula (3-36) to
formula (3-37) is kT, M

o I (3-38)

where w,; = eB|M is the ion cyclotron frequency. For many systems of interest
W2L2 ~ ET;/ M, while w < w,; by condition (vii) of § 2. Thus the ratio (3-38) is much less
than unity and the ion stress tensor has negligible effect in determining the change
in E from its equilibrium value, although it may play an important role in deter-
mining E,.

The change in B, however, is determined from curl E = —0B/ét. Thus it follows
from the Ohm’s law equation (3-24), neglecting the contribution of the term in
divi;i on the basis of the preceding considerations, that

%3 = curl (v x B). (3-39)

Equation (3-39), however, is precisely what one obtains on combining the
induction equation (2-5) with the Ohm’s law of the preceding work, (2-3). Thus, in
those cases where the stress tensor is isotropic, the linearized equations governing
the motion are unchanged by the inclusion in the Ohm’s law of the two additional
terms. Therefore, F{g} and § W are also unchanged and the energy principle holds
in the form previously derived.

If the stress tensor is given by (3-25) and (3-34) there exists an energy integral
U =[arlip| v+ 3| Bl p, + i+ o), (3-40)

while (3:34) (3-39), and the law of conservation of mass p = —pdiv v permit one

to express p, B and p in terms of their initial values and §. The expressions do not
involve B. Thus, since the system is conservative there must exist a potential energy
O0W quadratic in § which implies as before that the associated first order force F{E}
is self-adjoint. The energy principle is, therefore, still valid and stability can be
determined by examining the sign of the new 6 W which is given by

8W=—%deE.F{E}

- %fd?lcurlAlz

-] dol(a.Brn.erad (5, +| B |3)

. +e.§(p,—p,)n.[(e.grad) § — (§.grad) ]}
+3 [arl Q1P =5.0 xE+§p,@ivER + (@ivE) G- grad 3,
+4p,[divE—3¢]? +qdiv[E(p,—p,)] - [div(p§)]E.grad ¢
—(py—p,)[e.(grad ). (grad ) .e—E.(grad e) . (grad §) .e
—4¢*+e.(grad§).(e.grad§) —E.(grad e).(e.grad )]}, (3-41)

where ¢ = (e.grad E).e and the subscript zero distinguishing equilibrium quantities
has been suppressed.
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The boundary condition on A remains as before, (2-33). The jump condition on
the pressure, (2-8), is replaced by

(p.+%|BJ» =0 (3-42)
In some cases collisions are sufficiently frequent to yield an isotropic stress
tensor for the equilibrium, but the collision time is much greater than an oscillation
or instability time. Under such circumstances the stress tensor will not remain
isotropic in the course of a motion but will be determined by (3-34), withp, = p, = p.
Expression (3-41) for W then differs by a positive definite term from the corre-
sponding equation (3-13) for the case where the stress tensor remains isotropic in
the course of a motion with v = §. Hence, the equilibrium is at least as stable.

(b) Comparison theorems

There are various comparison theorems which follow from the energy principle.
Two examples will now be given.

Consider a system (I), a part of which is a vacuum region (a). Compare this with
a system (IT), which in the equilibrium state is identical with (I), except that the
part corresponding to (a) is a zero-pressure plasma. Then if system (II) is unstable,
so is system (I). To demonstrate this it is merely necessary to note that the expres-
sions for W for the two systems differ only in that the vacuum contribution
3 f dr | curl A |2 for region (a) of system (I) is replaced by } f | curl (€ x B) |2d7 for
system (II). Suppose §;; and A;; are trial functions which make the change in
potential energy for system (II) negative. Then for system (I) choose A; = Ay;
and §; = E}; except in region (a) and there choose A; = §;; x B, which is a valid
trial function, since it satisfies the boundary conditions on A. This choice makes
oW for (I) also negative.

A second comparison theorem is established by considering two equilibria;
case (I), a fluid region in contact with a surrounding vacuum region which in turn is
enclosed by a rigid perfectly conducting wall; case (II), a fluid region which is
identical with the fluid region of I, but is in contact with a surrounding vacuum
region enclosed in a rigid perfectly conducting wall which either coincides with or
isexterior to that of (I). Assume further that all equilibrium quantities are identical
in the common regions of (I) and (II).

Suppose that vector fields § and A have been found which make § W negative for
case (I). The vector potential A can be assumed to vanish identically on the rigid
perfectly conducting wall enclosing (I) because of (2-35) and the fact that anarbitrary
gradient can be added to A without changing §W. Clearly the same vector fields
can be employed as trial functions for (IT) with A chosen to be zero in any regions
not common to both systems. Thus system (II) is certainly no more stable than (I).

4. APPLICATION OF THE ENERGY PRINCIPLE
(@) Procedure

The energy principle shows that the question of stability of an equilibrium
situation is reduced to an examination of the sign of §W{E,&} for arbitrary dis-
placements . For some equilibria physical reasoning leads to §’s which make
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SW{E, €} negative, and thus settles the question of stability in a simple manner. An
example of this kind is given in § 5. In general, however, it is not possible immedi-
ately to exhibit such a E. In this case a procedure is needed for examining SW{, €}
for all admissible §’s in a systematic fashion. One tries to make W {E, €} as small
as possible. Since it is a homogeneous quadratic form in g, one must introduce a
condition to keep its values bounded from below. This condition can be chosen in
any convenient way so long as it does not affect the sign of 6W{§, £}. In particular
it can be chosen to lead to analytical simplicity in the minimization. For example,
one can impose normalization requirements like J‘d'ro Po&? = 1, or alternatively one
can prescribe n,.§ on the fluid vacuum boundary (where a subscript zero as usual
denotes equilibrium quantities). In the latter case, it is, of course, necessary to
minimize separately for all admissible prescriptions of n,.E.

Consider a plasma surrounded by a vacuum region. A convenient program for
minimization consists of first examining §’s which do not move the interface (i.e.
n,.§ = 0 on the interface). Note that with this boundary condition the surface
terms do not contribute to 6 W and the non-negative vacuum term is minimized to
zero by choosing A = 0. If §W can be made negative, be it by inspection or by
choosing a normalization condition and minimizing, then the equilibrium is
unstable.

Suppose, however, dW is non-negative with the above boundary condition
n,.§ = 0. The equilibrium still may not be stable since displacements which move
the boundary may yield a decrease in potential energy. In this case it is convenient
to proceed by prescribing n,.§ (not everywhere zero) on the fluid-vacuum boundary,
and minimizing 6W, and éW; separately. No volume condition like f d7,pE2 = 1is
imposed here. Since W, is a non-negative form whose Euler equation is

curlycurl)A = 0 (4-1)
it obviously has a minimum.

Assume further, as is often true in practice, that there is a displacement § which
makes §Wy, stationary subject to a given prescription of n,.§. Then this stationary
value must be an absolute minimum and thus unique. To show this let v be any
displacement which satisfies the boundary condition n,.n = 0. Then

OWp{E +n,E+n} = OWL{E, E} + 26W5{E, n} + 0Wp{n, n}. (4-2)

The assumption that § makes 0W,, stationary requires that W5 {€, v} = 0, and leads
to the Euler equation F{E) - 0. (4:3)

Now, since ny.n = 0, 6Wg{n, 0} is non-negative by supposition. Thus SW{E, &} is
a minimum.

Form the scalar product of (4-1) with A, and of (3-3) with §, and integrate over
their respective volumes. The resulting minimum potential energy, subject to the
prescribed boundary values n,.§, is

1 .
oW = QJ\d‘Tono‘g{'ypodWog -B,.Q, - B,.(E.grad, B)
+ ﬁo .curl A + ﬁo .(E.grad, ﬁo)}. (4-4)
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This expression, of course, represents the work done against the unbalanced first
order total pressure {p + } | B |?) in a displacement of the boundary. Note that §W
in (4-4) is a functional of n,.§. The program is completed by minimizing (4-4) with
respect to §.n,.

(b) A physical interpretation

The problem of minimizing the volume contribution §Wy subject to the boundary
condition n,.§ = 0, under a particular normalization, yields conditions of physical
interest on the minimizing § when V¢ = 0. These conditions are that to first order in
E the fields j and B are tangent to the surfaces p = constant. That this is true to
zero order in g, that is, for the equilibrium quantities, follows from (2-20).

The choice of normalization for the demonstration is motivated by the fact that
it is possible by judicious integration by parts to write

Wg = %J‘dTo‘“ Qo +n,.8jo x m, |
+7Po(div, E)?
—2(n,.8)?j, x ny. (By.grad, n,)}, (4-5)

where n, is the unit vector normal to the surface p, = constant. It is obvious from
(4-5) that a normalizing condition involving n,.§ alone (e.g. J’ d7ypo(n,y.€)2 = 1)
should be sufficient to bound éW{E, €} from below. Let § minimize 6 W with such
a normalizing condition. Any small change in §, A, must leave 0 W stationary,
if it leaves the norm stationary. From the self-adjoint nature of F, it follows that

A[BW] = — j dr,AE. F{g} = 0. (4-6)

Consider AE’s of the form AE = Abj,+ AcB,, (4-7)

where Ab and Ac are arbitrary since the normalization condition involves only
g.grad, p,, and j, and B, are orthogonal to grad,p,. Then it follows that the
coefficients of Ab and Ac in the integrand of equation (4-6) must separately vanish.
Now F{E} = {—grad p+j x B};, where the subscript unity means the part first

order in &, so B,.{—gradp+jx B}, =0, (4-8)
jo-{—gradp+jx B}, = 0. (4-9)

Note, however, that it follows on taking the first order part of the identities
B.jxB =0andj.jx B = 0, and using j, x By, = (grad p),, that

B,.(j x B), + B,.(grad p), = 0, (4-10)
jo- (i x B)y +i,.(grad p), = 0. (4-11)

Thus if one subtracts (4-10) and (4-11), respectively, from (4-8) and (4-9), there
results, correct to first order in E,

(By+ B,).[(grad p), + (grad p),] = 0, (4-12)
(§o+i1)-[(grad p)o + (grad p);] = O. (4-13)
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Equations (4-12) and (4-13) express the conditions stated earlier, that to first order
in E the fields j and B are tangent to the surfaces p = constant.
After some manipulation, (4:12) (or equivalently (4-8)) can be rewritten in the

form B, .grad,divy§ = 0, (414)

which is often useful in practice.

5. STABILITY OF A PLASMA WITH NO INTERNAL MAGNETIC FIELD

Consider a plasma in which the magnetic field vanishes and the pressure is
constant and outside which there is a vacuum region with a magnetic field. Let
¢ = 0. It was suggested by E. Teller (1954, private communication) on intui-
tive grounds that if the lines of force on the interface are anywhere concave to the
plasma the state is unstable to local displacements. This is readily demonstrated
using the energy principle.

Choose a divergence-free displacement g so that

28W =fd‘r‘|curlA]’—%fda’(ﬁ.E)”ﬁ.grad|ﬁ[z, (51)

where fi is the normal to the interface pointing towards the plasma. Denote by
R the vector from a point on a line of force to the centre of curvature of the line.
Since, with |R| = R, . ~ o|BJ?

in.grad|B|2=1.R o

the surface term in (5-1) is negative or positive according to whether or not R points
towards the plasma. If R everywhere points away from the plasma, W is obviously
positive for all £ and A (even if div € 4 0) and the system is stable.

Consider a point on the interface where R is directed towards the plasma and
construct a local Cartesian co-ordinate system in a small region about this point,
with the z axis normal to the surface and pointing into the vacuum, and the x axis
in the direction of B. Choose the trial displacement g so that

£.(z,y,0) = & flx,y)sinky, (5-3)
where f is a function of order unity which falls to zero in the small distance a < R
and where ka?> R. Choose also the trial vector potential

(5-2)

A@.9.2) = fla,y) grad (57 cosy et} (54)
which satisfies boundary condition (2-33) where
B = Be,. (5-5)

These choices make the vacuum contribution to W negligible compared to the
surface term. For

fdr | curl A |2 -de{grad fxgrad [g" cos Icye—’f-‘]}2
J.dT | grad f |2£2B%e —2’“~g° , (5+6)

while jda (ﬁ.g)zﬁ.R%zl—eggBmz. (6:7)
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Therefore, W is negative and by the energy principle the system is unstable.

Note that the deformation which produces instability tends to flute the surface
along the lines of force. This moves some of the magnetic lines of force into a region
previously occupied by matter and thus shortens them while only slightly bending
them. The result is a decrease in the magnetic energy with no change in the gas
energy.

Similar results have been obtained independently by H. Grad (1955) and
C. Longmire (1955) (both private communications).

To estimate the rate of growth of this instability in the plasma choose the
displacement

£, =0, £, =E&lfcoskyers, £ = £\fsinkyekz. (5-8)

This § satisfies divE = 0 to order (ka)~!. Then the kinetic energy form is

_ 2 PET

LA

2
and ) T~ R

(5-9)
This is unbounded as k approaches infinity.

Gravitational effects are readily included in this case if we assume the fluid to
have constant density but varying pressure in the equilibrium state. This situation
is an extension of the hydromagnetic Rayleigh-Taylor problem (Kruskal &
Schwarzschild 1954) to an arbitrary interface. Choose the trial functions § and A
as before. The surface term in (5-1) is modified by the addition of the term

fda (fi.§)2h.gradp (5-10)
which, in virtue of the equilibrium relation
gradp = —pgrad ¢, (5-11)
becomes —fdo- (fi.€)%phi.grad ¢. (5:12)
The calculation now goes through as before and the situation is unstable if
a.[rIBI
n.|R 7 +pgradg|>0 (5°13)

anywhere on the boundary. In the case of a plane interface R is infinite and the
familiar hydromagnetic Rayleigh-Taylor instability criterion is recovered.

6. STABILITY OF AN AXISYMMETRIC SYSTEM
A more general case than that treated in the previous section occurs when a
magnetic field may be present in the plasma. This situation can be treated exactly
for two simple types of axisymmetric equilibrium situations. It is assumed that
gravitational effects are negligible (¢ = 0).
The first consists of a longitudinal current giving rise to a toroidal magnetic field
whose pressure supports a radial material pressure gradient. This is the well-known
pinch effect (see, for example, Kruskal & Schwarzschild 1954).
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The second consists of longitudinal and radial magnetic fields produced by
currents in the azimuthal direction. Again, a radial material pressure gradient is
supported by the magnetic field. The plasma is assumed to be in contact with a
rigid perfectly conducting wall. This equilibrium is studied here. It is shown that
it is possible to reduce the problem of stability to the consideration of an ordinary
second-order differential equation of the Sturm-Liouville type. In fact, virtually
all that is necessary is to find the number of negative eigenvalues which this equa-
tion possesses. In certain limiting cases one can further express the criterion for
stability in terms of simple properties of the equilibrium.

Note that in the previous problem of § 5 either § W is obviously positive definite
or one can easily display trial functions § and A which make it negative. In the
problem of this section, however, it is necessary to examine the sign of §W for all
possible displacements E. This is accomplished by first writing W in a co-ordinate
system natural to the problem and then successively minimizing with respect to
the components of the vector E.

The equilibrium vector potential A, in a fluid of this type (which is to be dis-
tinguished from the first order vacuum vector potential A previously introduced)
has only an azimuthal component, since the current density j is itself azimuthal.
Therefore, if in cylindrical co-ordinates (r, 8, z) one writes ¥ = r4,(r,z), then

B = curl(e,¢/r) = —(1/r) ey x grad . (6-1)

It follows from equation (6-1) that B.grad ¢y = 0. Thus the lines of force lie in
the surfaces i = constant and also in the planes ¢ = constant. Moreover, if one
chooses (0,z) = 0, it is readily demonstrated that the magnetic flux interior to
the surface iy = constant is 27y

Because of this flux property, it is convenient to employ ¥ as a co-ordinate. In
order to retain an orthogonal co-ordinate system, introduce a function x whose
level surfaces are perpendicular to the surfaces i = constant and 6= constant.

Choose x so that the set (i, 0, x) forms a right-handed orthogonal system. Note
that the volume element in this co-ordinate system is

dr = Jdyrdédy, (6-2)
where 1/J = B|grad x| = grad y.grad 6 x grad . (6-3)
1 0
Thus grad = ’Be'ﬁé%"'}.eﬁa%"',ﬁgexé}' (6-4)
where e¢, = l‘g%ag—%: (6.5)
_ gradd ,
e0"|grad0|: (66)
_ grady .
= Tgrad x|’ &1
Then, by (2-21) and (2-20),
. r o .
i= —eajw(JBz) =Jjey (6-8)
. rB o
and gradp=jxB = —€ 5 w(JBZ). (6-9)
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Thus the pressure p is a function of ¢ alone and if differentiation with respect to
¥ is denoted by a prime, (6-9) can be written

(nJB?) = —p'[B2. (6:10)
Therefore J = —l——ex l—-J-*dl/fE-’ 6-11
erefo = 5P\~ | Wik (6-11)

where the constant of integration (which is an arbitrary function of y) has in-
cidentally been chosen to make y reduce to the magnetic scalar potential when
p=0

Note that it follows from (6-8) and (6-9) that

P =jir (6-12)
and j/r is constant along a line of force.
Using these results the potential energy for the system is

SW = oW,

“jdlﬁd‘"d J:[ BJ 3% (’B@’r*[ ( )]2
+Bz[a—]/;(fB§w)+ ( )]2
+p'rBE, a,/,(’ng”ao(r)]
Blg- 5T

¥ ’fg w(ng ) +55 (Jg”)]

10 ,
3P gxgm}. (6:13)

Assume that the equilibrium quantities appearing in (6-13) are periodic over some
fundamental period in y which is equivalent to periodicity in z and also impose the
boundary condition that § be periodic in y over this period. All definite integrals
with respect to y are to be understood as extended over this period. The last term
in (6-13) then integrates to zero.

Now proceed to minimize §W over all displacements §. First note that the
integrand in (6-13) depends on 6 only via . This suggests Fourier analysis of § with
respect to 6. Write § in the form

sSin

&= 3 X0

&= 3 TE0n0| S fmo+ 82w,
b= 3 BZn(h) {sin}me. (6-14)

The potential energy 8W is to be minimized over the set (X,,, Y., Zm, &)
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Upon integration with respect to 0, the cross terms of the double series vanish and
o
oW =W+2 3 oW, (6-15)
m=1

2 2 2
where oW, = m|dx dw{ 2 B}z,] (ag;m) +7%2rj (%}%)
0X

+B2J(a—¢—+Y) +pIX, (a;; +Y)
oz, ]

TEp) + T, + 50

YRl o
+3 [ay,,(
, 0X,, oJ
+px,,,(J St g+ TEn )} (6:16)
and 30 is obtained by replacing Y,, in (6-16) by m&/r and setting m = 0.

Since for each m, §W,, depends only on the set (X,,,Y,,, Z,,), it can be varied in-
dependently. It is clear from (6-16) that if 6W,, can be made negative then 0W,,
can also be made negative. Thus it suffices to consider only the limiting case m = co.
Do so and suppress the subscript co. After some algebraic manipulation, (6-16)
becomes

1 (oX olnJ p2X?
SW = d¢de{ ZBsz(ax) p
1 ( x aan 10Z 11)_()
TBErp \C Y i B

X X(p'+ypolnJjoy)+(yp/J) aZ/ax]
2 .
+(B +7p)[Y+ T Btyp } (6-17)

For arbitrary fixed trial functions X and Z the expression above is minimized
with respect to ¥ by choosing

0 , olnJ\ ypdZ] ., “, )
..y_a_%+[x(p+ a;,,)+ ](B +7p) (6-18)
which makes
1 (eX\2 o, J 10Z7?
8W=%7T dwdx{m(‘a) +pDXJ+B_§:*_W))_1[ +ja_x }
(6:19)
olnJ p’ 2 0 9
where D= ey g Bza]/,(P‘F%B )
—ﬁe¢.[B.grad B] (6-20)

is positive or negative at a point ¥, i according to whether the line of force through
that point is concave or convex towards the side of smaller {. Consequently, the
system can be unstable only if somewhere a line of force is concave toward the side
of larger p.

Equation (6-18) corresponds to (4-13) of the general minimization scheme, the
content of which is that the minimizing displacement is such that the perturbed
current density j lies in the perturbed constant pressure surfaces.
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Next, the Euler equation resulting from minimizing (6-19) with respect to Z for

fixed X reads
0 1 10Z
B o (P4 5)| = © (6:21)

This equation corresponds to (4-12), the content of which is that the perturbed lines
of force lie in the perturbed constant pressure surfaces. Equation (6-21) yields on
integration with respect to

0Z 1
5 ( 5 )wa) _JDX. (6-22)
The constant of integration f(i) is determined by integrating (6-22) with respect
to x, namely,
1) = pripoip | DX, (6-23)
where L' = 2nfdxF2, V' =2x|dyxJ.

Note that V’dyr is the volume contained between two neighbouring constant
¥ surfaces.
The minimum & Wnow is

SW = 4 dl/fdx{;%ﬁ(%) 'JDXZ} f dl/ffz(L' V};). (6-24)

The integrands above do not contain any derivatives of X with respect to .
Thus one can consider i to be merely a parameter and write

oW = f Ay sw (), (6-25)

where §W () depends only on the values of X on the surface y. Consequently §W
can be made negative if and only if §W(y) can be made negative for some value of .

Asin § 4, it is necessary to normalize X to achieve a well-posed minimum problem.
An analytically simple normalizing condition is

H=}ir|dyJX2=1.

The minimization of § W (i) under this normalization is equivalent to minimizing

L(r P\ 1 (ax\? 2]
LN g (¥ +35) 7+ [ ax gy (35) +0%
H dem

Note that L', V' and J are all positive and only the term involving D can make
A negative. It is possible to derive a sufficient condition for instability from (6-26)
by choosing X to be constant in y. Then

A= PV =R L) VIV +p'vp)
V' +ypL

(6-26)

(6-27)

and if for any value of  this expression is negative the system is unstable.
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In certain limiting cases it is possible to derive necessary and sutficient stability
criteria directly from (6-26). In general, however, one must proceed with the
formal minimization program.

The Euler equation resulting from the minimization of A is

o( 1 X
ox \r2B*J oy
where the variation in f has been computed from (6-23).

It is possible to derive from (6-28) certain general criteria for stability by ex-

panding its solutions in terms of the eigenfunctions X; of the Sturm-Liouville

equation
21 X,
ox \r2B%J oy
obtained by omitting the integral on the right-hand side of (6-28).

) +(A-p'D)JX = JDf, (6-28)

)+ (A;—p'D)X,;J =0, (6-29)

T
._’7
T
—

Ny

I
o [
<

FIGURE 1. Schematic plot of F(A) against A.

By the Sturmian theory (Ince 1944) the X; comprise a complete set of eigen
functions with associated eigenvalues A;. The A; are all distinct and can be arranged

in an infinite increasing sequence A;, A,, .... Note that the X; can be normalized
such that
f Ay X,X,J = 8, (6:30)
Thus one can write X = 2b; X, (6-31)
D = Za; X, (6-32)
Then there results upon substitution in (6-28)
—2b;(A;—A)JX; = fJZa; X;, (6-33)
and in virtue of (6-30) it follows that
—bj(A;—A) = a;f. (6-34)
But if one substitutes (6-31) and (6-32) into (6-23) and then employs (6-30) and
(6-34) one finds 1 V') a?
I ') = . 6-3
2ﬂ(L o) = Ex2r (6:35)
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The roots of (6-35) determine the possible values of A. Denote the right-hand
side by F(A) and plot it versus A. Note that d#/dA < 0. If none of the a; is zero the
graph is as in figure 1 and the intersections of this curve with the horizontal line
F(A) = (3m) (L' + V’|yp) are the eigenvalues A, of (6-28). If a; = 0 for some j, the
associated branch of F(A) is not present in the diagram. It follows in this case from
(6-34) that the associated root is A = A;. This is also the result which one would
obtain if one considered the limit as a; — 0 of the associated intersection of the graph.

Clearly from figure 1, A; <A;<A,;<A,.... Thus if A, is positive, so are all the
Ay's while if A, is negative, then A, is negative. If A; is negative and A, positive,
then the sign of A, is not obvious. However, it is possible in this case to derive a
criterion for the sign of A;. Integrate (6-29) with respect to y. There results

Al dyJX; = p’J‘deX,Za,iX1i =p'ay. (6-36)
a? a 1
Thus F0=—2—'=_2_i,fd JX=__,fd JD
(0) A P Xd g P X

,J) v L 37)

1 ’
== ) =
Now assume that A, <0, A;> 0. Since A, is determined by the condition

F(Ay) = 5 (L' + V'lyp)

and F(A) is monotonically decreasing in the interval A; <A <A, ..., it is clear that
if F(0)> (1/27) (L' + V'[yp) then A, > 0 and conversely. But

1 , VI _ VI V’ pl .
FO- 5 (1 +2) =~ g (3 2)- (6:39)
One can write A,20>A,20,

’ » ’
A <0<A,—>A, Z0 as J—ﬁ (%+%) =0,
Ay<0->A;<0. (6-39)
In three limiting cases stability criteria can be obtained directly from (6-26),
(i) if the material pressure is small compared with the magnetic pressure (i.e.
2p £ B?), (ii) if the surface y = constant under consideration lies close to a cylinder
and (iii) if the pressure gradient is large.

(a) Case I

Consider all quantities to be expanded in some parameter of smallness which
essentially measures 2p/B? and write

p=0+pV+.., X =XO04 X0
B=B9+BO4 ..., A=AO4AD4 |
with similar expressions for other quantities. There results from (6:26) to lowest

order, 1 2XO72
R L

(6-40)

(6:41)
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Clearly A is minimized by choosing X® constant in y, which yields A® = 0. This

expresses the fact that the lowest order equilibrium is neither stable nor unstable,

but neutral. Proceeding to the next order we find

V l
D

AD| dy JOXO2 =

foz 4 j dy pv’ DOJOXO2, (6-42)

which by employing (6-23) can be reduced to

| yorryor pa)'
A(l) = '}'p V(o)/ [ (o)l p(l)]

The sign of A® determines stability in this case. Equation (6-43) agrees with the
criterion of (6-39) in the case 2p/B?2< 1, since if V"p’ >0, A, > 0 and both equations
yield stability, while if V"p’ <0, A; <0< A, and (6-43) agrees with the second part
of (6-39).

(6-43)

(b) Case 11
Consider a surface {r = constant. Denote by R the radius of curvature of a line
of force, by L the characteristic length for the variation of equilibrium quantities
along a line of force, and by a the characteristic distance in which the pressure
changes by an amount comparable with itself. Assume that everywhere on this

surface iy = constant, L*/Ra?<1, (6-44)

in which circumstance the positive term in A proportional to (0.X/0y)? dominates,
unless 0X /0y = 0 to lowest order in the parameter of smallness. Thus one is led to
choose X© = constant. This leads immediately as in (6-27) to the first-order

lt ’ ’ n ’ ’ " ’
resd A = yp(V' =p'L'Y(V"|V' +p' [yp) (V" +ypL') . (6-45)

Equation (6-45) reduces to (6-43) in the limit of small p. [f L?*/Ra? < 1for all surfaces
¥ = constant, then that (6-45) be negative on some surface is a necessary and
sufficient condition for instability, otherwise it is only sufficient. Relation (6-44)
is obviously satisfied if the surfaces are very nearly cylindrical.

Equation (6-20) gives an estimate as to the order of magnitude of E. If the two
terms in the first line of (6-20) do not cancel, one obtains

R~a?r. (6-46)
However, if they do cancel, as in the case of the cylinder, R is an order of magnitude
larger. With this reservation, (6-44) reduces to

r<a?[L. (6-47)
Equation (6-45) is thus valid, for any equilibrium, for ¥ surfaces close enough to
the cylindrical axis.

(c) Case 111
Consider an equilibrium such that everywhere on some surface iy = constant
| grad p | > B2R/S?, (6-48)

where R again is the magnitude of the radius of curvature of a line of force and § is
the distance over which it has the same sign. Assume that there is some region on
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this surface for which p’D < 0 and construct a trial function X which is zero outside
of this region and varies smoothly within it. Then inequality (6-48) guarantees that
the term in p’D in (6-26) dominates and the associated A is less than zero. Thus the
equilibrium is unstable. In the appropriate limit this case corresponds to the
complete separation case of §5.

The authors are indebted to Dr Lyman Spitzer, Jr for enouragement, criticism
and stimulating discussion.
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Some instabilities of a completely ionized plasma
By M. KRUSKAL AND M. SCHWARZSCHILD

Princeton University Observatory, Princeton, New Jersey

(Communscated by 8. Chandrasekhar, F.R.S.—Received 5 October 1953)

Two cases of equilibrium for a highly conducting plasma are investigated for their stability.
In the first case, a plasma is supported against gravity by the pressure of a horizontal mag-
netic field. This equilibrium is found unstable, in close correspondence to the classical caso of
& heavy fluid supported by a light one. The second case refers to the so-called pinch effect.
Here a plasma is kept within a cylinder by the pressure of a toroidal magnetic field which
in turn is caused by an electric current within the plasma. This equilibrium is found unstable
against lateral distortions.

1. INTRODUCTION

In classical hydrodynamics the problem of stability of fluid motions has been solved
explicitly for a number of basic cases. Recently, Chandrasekhar (1952, 1953) has
investigated and solved several of these basic problems in their hydromagnetic
formulations in which electromagnetic fields are introduced and in which the fluid
in question is considered electrically highly conductive. In the present paper two
more cases of hydromagnetic instability are investigated.

The first case (§3) is that of an infinitely conducting plasma at uniform tem-
perature lying above a horizontal plane in a uniform gravitational field directed
vertically downwards. There is a horizontal magnetic field uniform in each half-
volume with a jump in field strength produced by a uniform horizontal sheet current
in the boundary plane. The gravitational force is balanced by a pressure gradicnt in
the plasma and by the jump in magnetic pressure at the planc. This case is somewhat
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analogous to the familiar unstable equilibrium of a dense fluid supported against
gravity by a lighter one (see, for instance, § 231 of Lamb 1932).

The second case (§4) is that of an infinitely conducting uniform plasma lying
within an infinitely long circular cylinder. There is a uniform sheet current on the
cylinder parallel to the axis, which produces a toroidal magnetic field outside
the cylinder. There is no gravitational field. The plasma pressure is balanced by
the magnetic pressure. This case is an idealization of the well-known pinch effect.

Finally, in §5, it is investigated how far the approximation of infinite conduc-
tivity with the simultaneous introduction of sheet currents and sheet charges on
the surface of the plasma is an appropriate representation of the actual cases with
large but finite conductivity. This question is studied in a sample case similar to
that described in § 4 but of a simpler geometry.

The results are summarized in § 6.

2. BASIC EQUATIONS AND APPROXIMATIONS

Let p, p and v be the pressure, density and velocity of the plasma respectively.
Let E, B, j and € be the electric field, the magnetic field, the current density, and the
electric charge density respectively. Let g be the acceleration due to gravity, o the
conduetivity of the plasma, x, the permeability of free space, x, the permittivity
of free space, and y the ratio of specific heats of the plasma. We shall use the fol-
lowing equations for the interior of the plasma:

Pl =ixBeE—pipg, 1)
q
Vv =-%, (2)
E+vxB =£-'(j——ve), (3)
JE
VB = (i k05 ) 4)
V.B=0, (5)
‘B
VxE= T (6)
V.E=.
. -'—(;e, (7)
Idp _ydp
pdt ~pdi’ ®)

These equations should apply to a plasma under the following conditions. First,
encounters between particles are sufficiently frequent to permit the representation
of the stress tensor by a scalar pressure. Secondly, the perturbations are sufficiently
slow and the electron density sufficiently high so that the extra terms which strictly
should be added to equation (3) are negligible. Thirdly, heat losses by conduction

MHD STABILITY AND THERMONUCLEAR CONTAINMENT



350 M. Kruskal and M. Schwarzschild

and gains by Joule heating are negligible so that the simple adiabatic equation (8)
holds.

In the vacuum we have p = 0 and p = 0, and equations (4), (5), (6) and (7) hold
with j = 0and € = 0.

We next derive the equations that hold at a surface separating the plasma from
the vacuum. At such a surface we allow a sheet current j* and a sheet charge €*,
as well a8 jump discontinuities in the other physical quantities. Let the unit normal
to the surface be n (directed into the plasma), and let the surface have a normal
velocity un. Since the surface moves with the plasma we must have
%‘t—l=nx(nxVu). (9)
The separating surface is only an approximate representation of a thin layer of
plasma of width & in which j and € are finite but large of order 6! and across which
the other physical quantities vary continuously. The integrals of j and ¢ across this
layer are given by j* and e* respectively. The integral of any one of the other
quantities across the layer is of order § and therefore vanishes with . If ¢ or q
represents any of these other quantities, then the integral of Vg, V.q, or Vx q is
given, except for terms which vanish with 8, by n[q], n.[q], or n x [q] respectively,
where the brackets (in this section only) denote the difference of the quantity within
them from one side of the layer to the other, or in other words, the jump of the
quantity across the separating surface. Finally, we must observe that the main
contribution to d¢q/dt or dq /ot within the layer comes from the motion of the layer
combined with the gradient of g or q across the layer, and is given by —un.Vq or
—u(n.V)q respectively.

Our procedure is now to integrate each of the plasma equations (1) to (8) across
the layer and then to go to the limit as § > 0. Equation (2) yields n.[pv] = u[p],
which follows anyway from equation (9), since p = 0 in the vacuum. Equation (8)
yields 0 = 0. Equations (4), (5), (6) and (7) yield respectively

% =1Nn.V,

n x [B] = po(i* — ko u[E)), (10)
n.[B] =0, (11)
n x [E] = 4[B], (12)
n.[E] = le*. (13)
Ko
Equation (3) yields %(j*-ve*) —o, (14)

unless o = oo, in which case it yields 0 = 0. Finally, equation (1) yields
*xB+e*E—n[p] = 0, (15)

where B and E denote appropriate averages of the values of B and E respectively
in the layer; the correct treatment of equation (1), in which j and ¢ are eliminated
by equations (4) and (7) before the integration across the layer, shows that the proper
average to take is in each case the ordinary arithmetic mean of the values on the
two sides of the separating surface.
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3. INSTABILITY OF A PLASMA SUPPORTED AGAINST
GRAVITY BY A MAGNETIC FIELD

In this case we take 0 =0, g, =g, =0, g, = —g,. In the equilibrium let the
plasma lie above the plane y = 0, and in it let p = p,exp (—hy), p = pyexp (—hy),
v=0,B,=B,=0,B,=Bl,E=0,j=0,¢=0. In the vacuum let B, = B, = 0,
B, = Bf, E = 0. On the surface y = 0 let j* = j§, jJ = j5 = 0, ¢* = 0. Then the
plasma equations (1) to (8), the vacuum equations, and the surface equations (9)
to (15) are fulfilled if the constants g,, Do, po; b, BY, BY and jg satisfy

h = gopolpo, BT —BY = mojd, J3(BT+BY)+2p, = 0. (16)

We now write a tilde over the symbol for a physical quantity to indicate its
perturbation, i.e. the difference between that quantity and its value in the equi-
librium solution just given; thus § = p—p,exp(—hy), ¥ = v, etc. We then seek
a solution near the equilibrium solution by linearizing all our equations in terms of
the perturbations. The resulting homogeneous linear equations have constant
coefficients except for plasma equations (1), (2) and (8), which have coefficients
proportional to exp (—hy). If we restrict ourselves to investigating phenomena
which in the plasma differ from the equilibrium solution appreciably only near the
surface, i.e. for which the perturbations approach zero much faster than exp (— hy)
as y gets large, then we may to a good approximation replace the factor exp (— hy)
in the coefficients by unity.

Every solution of the resulting system of homogeneous linear differential and
algebraic equations may be obtained by superposition of elementary solutions, an
elementary solution being one in which each perturbation in the plasma is pro-
portional to exp (ik,x—kl'y+ik,z+ wt), each perturbation in the vacuum to
exp (ik,z+ k) y +ik,z+ wt), and at the surface to exp (ik,x+ik,z+wt). For the
solution to make physical sense we require k, and k, to be real and k} and k) to
have non-negative real parts, and in fact we require #£[k}]>h to accord with the
restriction made in the previous paragraph.

For each physical quantity we denote the constant amplitude factor by the same
symbol except for replacing the tilde by a circumflex. The system of differential
equations for the perturbations becomes a purely algebraic system of linear equations
for the amplitude factors. Introducing the dimensionless quantities

B = popo| Bi”, G = Phlk,, 1T = ly+f+pokipow?,
P = kyk,, V =kylk, Z = (k2 + poKow?) [k, (17)
T = (popo)t /B k,,
the conditions that the system of homogeneous equations for the amplitude factors
have a non-trivial solution are found by successive elimination to be

V=142,
T*+Z = PG—-(1+2p)(yP-TG)Z|yV
+[y—1+(p+1/y)T1G*y8, (18)

(T2+2){P—1/P~[1-(f+1}y)T1G+(1+2p)(1-pT) Z|V}
=[y—1+(8+1/y) T1G2ypP — (1 + 28) TGZ|yPV.
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We thus have three conditions on the five characteristic parameters k,, k3, k), k., v,
80 we may regard k, and k, as given (i.e. the wave-lengths of the perturbation in the
two horizontal directions as given) and the others (i.e. the extent of the perturbation
upwards into the plasma and downwards into the vacuum and the characteristic
time of the perturbation) to be determined. Since ux, is the reciprocal of the square
of the velocity of light, we have, very nearly, Z = k2/k2, so that in equations (18)
we may consider G' and Z as known and P, V and 7 to be determined; in terms of

th, iabl
ese variables 1T = 1/y+ B — poKkopolpo + BZ|T*.

We now assume that |G'|<1 and |Z| <1 and seek the limiting forms of the
solutions of equations (18); we obtain a solution which to lowest order is

|P|=l’ |V|=l’ T2=ka/|kzl_2(l+ﬂ)z' (19)

o. °
l—“o. . .0 . .‘-l-\____/.—

L]
. ) « o ° .

Ficure 1. Instability of plasma supported against gravity by a magnetic field. ||| plasma,
.. magnetic field; +, — electric charge; - electric field; >> motion of plasma.

Furthermore, it seems that for any other limiting solution of equations (18) 7'
becomes real and negative as G and Z approach zero, so that solution (19) represents
the only possibility for instability. The condition that instability occur in this
solution in the approximation of infinite light velocity is 7' > 0, or

21+ 1/B) k2 < h| k,|. (20)

Hence instability occurs if the wave-length of the perturbation along the magnetic
field (2-direction) is long compared to the geometric mean of the scale height in the
plasma and the wave-length across the magnetic field (z-direction).

The amplitude factors are given in table 1 for two limiting cases, one of instability
when Z = 0, the other of stability when G = 0. Each amplitude factor is given to
lowest order in G and in Z in the respective cases. However, terms containing the
velocity of light in the denominator are omitted, except in} and f *, where they are
retained so that the equation V.j = —0¢/ot (derivable from equations (4) and (7))
can be seen to be satisfied at the boundary surface.

Finally, we get from equation (19) for the limiting case of Z = 0 (no dependence
on z)

w* = go| ke . (21)

and for the limiting case of @ = 0 (no gravity)
w? = —kXB§" + BY) popo. (22)
while in both cases kP = kY = | k,|. (23)
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The perturbation corresponding to the first limiting case (Z = 0) is shown in
figure 1. We may describe this perturbation approximately as follows. Electric
charges on the boundary of the plasma produce electric fields. These electric fields
are perpendicular to the magnetic field and hence cause the plasma to move. These
motions are essentially divergence-free so that density and pressure do not vary if
one follows an element of matter. The motions carry along the magnetic lines, but
neither bend nor compress them, so that the magnetic field, both in the plasma and

TaBLE 1
unstable solution stable solution
Z=0 G=0
plasma
P pohik, —yPo(1+28) k. /(1 +yB) k.
P poh/kz "Po(l+2ﬂ)k-/(l+7ﬂ)k:
v, —iwlk, —iw/k,
v, w/k, wlk,
v, O 0
B, 0 BS
B, 0 iB}
B, v -Bo’(l+2ﬂ)kl/(l+7ﬂ)k:
E, -Bfuwlk, —Bfw/k,
E, —iBlulk, —iBw/k,
E, 0 0
Je  [1+(1+28)/(1+ ) Kogo B k| k. | [1+(1+28)/(1 + 7)) BY ky/pte
Jv i}[l +(1+28)/(1 + 7)) ko090 BS i[1+(1+28)/(1 +vA)]) BS ku/pho
Js 0
€ 0 0
vacuum

B, 0 —-B}
B, 0 iBY
B: 0 - Bo'kn/kz
E, -Bjujk, —Bl w/k,
E, iBjwlk, iBY w/k,
E. 0 0

boundary surface
J*  KegolBY —BS(1+2B) /(1 + YAk, [By —Bj(1+28)/(1 + v [1-2(1+1/8)

X foKoPo/Pol ks/to k2

.7: i(Bo’ —B:)/l‘o i(Bor—Bov\ kc/.“ok-
g o — (B +B{) o
€* —ixy(Bf+ B}k, —iKo(BS + B w/k,

in the vacuum, stays constant. The accelerations of the plasma and the pressure
gradients together produce small electric currents which tend to increase the charges
on the plasma boundary, thus making the perturbation unstable. Even though in
this perturbation the electromagnetic field produces the plasma motions, the speed
of the instability as given by equation (21) is exactly the same as that of the well-
known purely hydrodynamic case of a heavy fluid supported against gravity by a
lighter one.

The second limiting case (G =0) represents a hydromagnetic surface wave which
travels on the boundary of the plasma along the magnetic lines with the character-
istic speed given by equation (22).
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The discriminating condition (20) between the stable and the unstable cases may
be described as follows. If the wave-length along the magnetic lines is sufficiently
short, the restoring force of the magnetic field which resists the bending of the
magnetic lines will prevent their sagging. On the other hand, if the wave-length of
the perturbation along the magnetic lines is too long, the perturbation will bend
the lines only alittle and the magnetic restoring force will be too small to counteract
gravity, so that the plasma will drop downwards.

4., LATERAL INSTABILITY OF PLASMA CYLINDER IN TOROIDAL MAGNETIC FIELD

In this case we take o = 00, g = 0, and use cylindrical co-ordinates r, 0, z. In the
equilibrium let the plasma lie within the cylinder » = r,, and in it let p = pg, p = p,,
and v, B, E, j and € vanish. In the vacuum let B, = B, = 0, B, = Byr,/r, E = 0.
On the surface r = 7 let j* = j3 = 0, j¥ = j§, e* = 0. Here ry, po, py, B, and jg are
constants, and we require

By = pojs: Js By = 2po, (24)
80 that the equations of § 2 be satisfied.

We now investigate solutions in the neighbourhood of this equilibrium solution
as before by indicating the perturbations from the equilibrium by a tilde. In the
equations of § 2 we retain only the first powers of these perturbations and obtain
a system of homogeneous differential and algebraic equations with coefficients
depending only on r. Accordingly, the elementary solutions of this system have the
form § = §exp (imf +ikz + wt), where q is any physical quantity, § is a function of
r (unless ¢ is a surface quantity), m is an integer, and k is real. We restrict ourselves
to the case m = 1.

Substitution gives a system of ordinary differential equations for the amplitude
factors which reduce, after eliminations, to

d/ d, ~ -
" (rd—,p) ~[(k*+pow?|ypo) r*+ 1] = 0 (25)
in the plasma, and to

d{ ds
r&(r(T )—[(L +poxow2)r2+l |

d( da
r&(r&E) [(k2+/40A0w2)r2+1]E =0 .

in the vacuum. We introduce the functions
J(@) = — (i), H(x) = - HY(ia), (27)

where J; and H{) are the Bessel and Hankel functions of the first kind and of first
order. We further introduce the constants

8% = K +pyw*ype. 1 = k*+ poko0?. (28)

Assuming that «? is real and positive and taking { > 0, 7 > 0, we see from equations
(25) and (26) that ) R
p=pJr), B.=BiH(yr), E.=ELH(yr), (29)
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where p!, BL, E! are constants. The other independent solutions of equations (25)
and (26) are excluded because they become infinite at » = 0 and r = co respectively.
The surface equations now give three independent linear homogeneous relations
among p!, B} and EZ, and the condition that these have a non-trivial solution is

2102 2 ™
PoTo MW J'(gro) =, +’f_'2 H'(m'o) +,u°K0r,2,w2H (7o) , (30)
2pe8 J'(Ero) 2 H'(qry) H(nry)
TABLE 2
exact solution in terms of approximate solution for
Bl = PoBokl J'(Lro) HoKo RO
° porow?n H'(qry) and
lk|re<l
El = PoBoL I (Er0)
* pow H(yry)
plasma
P Pod(Er) 3| k|poll +2L ylir
p PNy | k| polL +2L/yltr/y
v, — P& (Er)Ipow —3[po(1/L +2/y)/2pe]}
vy —iped (Lr)ipowr —Hlpo(1 L+2/7)/2p5]t
o, —ikpyJ({r)/pew —~3ik[po(1 L +2/7)/2po} 1
vacuum
, —ipoKoELH(yr)m*r— kB3 H'(yr)/y — HByro[1+ 2L/y1Y/| k| Lr®
By kBLH(yr)[n*r+ pokowE} H'(r) I —4Borol1 + 2L y1¥/| k| Lr?
B, BlH(yr) — }kByro[1 + 2Lyl | k| Lr
E, iwByH(yr)ntr—ikELH (r)/n FikByrol po( 1L +2/7)/2p,)!
X [Lri/r2 + L +1n (r/7)]
Ey kE;H(yr)/q*r—wB H'(yr)/y 3kBoro[po(1/L + 2/y)/2pe]t
x [Lrijr2 — L —1In (r4/7)]
E, E;H(yr) 3B,ro[po(1: L + 2'y)/2pe ]t r
boundary surface
G —ikpy Bold (Lro) Hapot® — ikj3(1+ 2Lyl | k| L
Js = BiH(ro)/pe 1kj3(1+2L yl¥/|k| L
7¥  kBLH(qro)ipon?re+kowE H'(qr0) 7 k|58l +2Liy]
+ D Bo 8 (Ero)/popoTow?
€ ikowB H(qro)[nPrg—ikeo EYH (7o) 7 Yik ko Boro[ pol1/L +2.7) 2p,)t

x [Lr§ir?+ L+1n (ry )]

where J' and H’ are the derivatives of J and H. If we normalize by taking p! = p,,
then B! and E} are determined by these relations. Their values are given in table 2
at the head of a column. The remainder of this column contains the exact solution
expressed in terms of B} and E%; ﬁ, 'E, ; and ¢ all vanish in the plasma and are
therefore not listed in the table.

We now neglect terms which have the light velocity in the denominator, such as
the last term of the second equation (28) and the last term of equation (30). Thus,
equations (28) give 4 = | k| and equation (30) gives

Po’%'“ﬂz J(Lro) _ H(| k]| r,)
208 TG~ KU H [k )

It can be proved that, for any fixed value of k + 0, the left-hand side of this equation
varies monotonically from 0 to co as w? goes from 0 to co through real values; since

(31)
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the right-hand side can be shown to be positive, it follows that equation (31) has
a unique real positive solution w? for each value of k. Thus the equilibrium is
unstable. This instability is in agreement with the earlier results of Lundquist
(x951).

In the limiting case in which the wave-length of the perturbation along the
cylinder is long compared to the cylinder radius, i.e. in which | k| r,< 1, equation
(31) gives for the main term in w (taken positive)

wx| k| (2Lpy/pe)t with L = —C+1, (32)

] 2
n_.—
| ] o

Fi1Gure 2. Lateral instability of plasma cylinder in toroidal magnetic field. /// plasma;
->electric current; {_* magnetic field; 1 magnetic force.

where C ~0-5772 is Euler’s constant. The amplitude factors for this limiting case
are given in the last column of table 2. In the opposite limiting case of large | k| r,,
equation (31) gives w= (2| k| Boloro)t. (33)
Equations (32) and (33) show that these unstable perturbations e-fold in about the
time that it takes a sound wave to travel a distance equal to the wave-length of the
perturbation or equal to the geometric mean of the wave-length and the cylinder
radius, whichever is the larger.

The character of this unstable perturbation of a plasma cylinder is shown in
figure 2. (This figure actually shows a lateral sinusoidal perturbation obtained by
superposing two oppositely twisted helical perturbations, i.e. two perturbations
as given in table 2 with k’s of opposite sign.) The cause of the instability can be
described as follows. When the plasma cylinder is distorted into the wavy form
shown in figure 2, the toroidal magnetic lines are separated from each other at the
convex side of the cylinder and pressed together at the concave side. In consequence,
the magnetic pressure which holds the cylinder together is put out of balance, being
weakened on the convex side and strengthened on the concave side. The net result
is that the total magnetic force tends to increase the perturbation and thus leads
to instability.

Another problem, similar to the one detailed above, was computed through in
which the plasma instead of being confined by a cylindrical surface was confined by
two parallel planes. In the equilibrium configuration, the plasma was again kept
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in its boundary by the pressure of a magnetic field, which was parallel to the planes
and larger outside the plasma than inside. In contrast with the foregoing cylindrical
case, it was found that this plane case is neutral to perturbations in which the
two confining surfaces are distorted into sinusoidal wave-forms. Furthermore, for
this simple case, it was easy to compute through the perturbations for two different
assumptions regarding the current distribution in the equilibrium configuration.
In the first version it was assumed that the equilibrium current was entirely con-
fined to the surface of the plasma—similar to the assumption in the cylindrical case
—and in the second version it was assumed that the equilibrium current was
evenly distributed throughout the plasma between the two planes. In both versions
the same neutrality of equilibrium was found. This latter result may be taken to
indicate that the stability question for the type of equilibria here considered is not
seriously affected by the form of the assumed current distribution.

5. EFFECTS OF FINITE CONDUCTIVITY

In this case we take o finite but very large, ¢ = 0. Let the plasma lie between
the two planes z = + z,, and initlet p = po(1 —22/22), p = po(1 —2%[2}), B, = Byx/|x,,
E, =E, j,=j, and v, € and the other components of B, E and j be zero. In the
vacuum let B, = B, =0, B, = B, for x>2,, B, = — B, for xz< —z5, E=0. On
the surfaces z = +, let j* = 0, ¢* = 0. We then have an equilibrium system if
the constants x4, Py, pg, Be, E¢, jo and o satisfy

Eo =jolo, By = ttoJoTer JoBoo = 2po. (34)

We now introduce the perturbations as usual and seek solutions of the somewhat
restricted form § = §exp (ikz+ wt), where the amplitude factor § is a function of
z and k is real. The resulting system of equations for the amplitude factors splits
into two entirely separate systems, one for 3, ﬁz, ﬁz, ﬁy, j:, and ﬁ‘,‘, the other for the
remaining variables. We confine our attention to the latter system.

We introduce the dimensionless constants and functions

a = ftoKoPolPo> w? = poZ§w?[ypy,
A= Yo+ 2) pexfow, V2= (2y7 + 1) poafow, (35)
7% = x3(k? + poKow?), R =1+ 2y tx522?,
S=1-2(1-y ) x52z? T =1+ 2oy 2a?,
choosing #[v] > 0 and Z[7n] > 0.
Now any solution for the amplitude factors can be written as the sum of an odd

A

and an even solution, where an odd solution is one in which the functions o, lAi'y, E,,
j,; are all odd in z, and the functions p, g, 9,, i’z, f;, €are all even in «, and vice versa
for even solutions. For a rough comparison with the eylindrical case, odd solutions
correspond to radial perturbations and even solutions to perturbations varying as
exp (if), which we have discussed in the preceding section. Accordingly, we shall
restrict ourselves here to even solutions.

The system of differential (and algebraic) equations for the amplitude factors
in the plasma is of fifth order and is singular at = 0. It has three independent
even solutions.
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We are interested in the asymptotic solutions as o— oo. We assume that o has
a limit different from zero. If we set o = oo the system of equations in the plasma
reduces to a non-singular system of second order, having one even solution. This
solution is given in the first column of table 3, where ¢ is a function of x vanishing at
2 = 0 and satisfying

X"+ 22(R1— 2aT1) ¢’ = (ka3 +w*RT) ¢, (36)
the prime denoting differentiation with respect to z.
TABLE 3
column 1 column 2
(each entry to be multiplied
by e(z-zeize)
P poR N yp—2w ST z¢’) 2pg
P poRN-2w T 'xg’) 2po/Y
vy —YPolpowT) ' ¢’ — 2z w[yv
v, —ikypypowT)1¢ —2ikafw/yv?
B, By(zyR)(z¢+xiw-2ST-1¢’) - B,
E, —ikypyBo(porowT) ' 2 ikz§ Byw/v?
E.  ypoBy(pyx,wT)~' xg’ —ZoBow/v
Je  —ikj[(R'—yaT V) x¢ +2jw 2R-1ST-¢’] ikxg 7o
o Jl(S+2) R 1+ kadw ST —jo¥
—jow T12(S + 2) R — (1 — ya) w*] xg’
€ ikyago(wT) 1 (1-2T1) ¢ — 2ikjo(1 + ya) w?/(1ja +2) v?
column 3 column 4
(each entry to be multiplied (each entry to be multiplied
by eAlz—ze)/ze) by e~ntz-zeizs)

P ikzopo[y(1+20) wh+ 4(2/y — 1)/(1/a + 2)]jA%
P —2ikzype(1—1/y)/A
v, —ikajw/A
v,  Low
B, —2ikzyBy(2:y—1)/(lja+2)A2 — Byyaw?
E, z,Byw ikz3 Byw
E, ikaiB,w/A zoBown
j: _.’;oY“wz

Jo —ikzgjoalyw?+2(2/y — 1)/(1+2a)]/A
€ (Jo/Tow) yaw?A

The asymptotic forms of the two remaining even solutions are not obtained by
this procedure, since they do not converge uniformly as o —co. Instead, they drop
off from their values at = x, more and more rapidly as o gets larger and larger. If
we rewrite our system of equations in terms of the new independent variable
£ = (x—x,)ot and then let o—>oo, the system becomes asymptotically a non-
singular system of fourth order. This has one even solution in addition to an asymp-
totically constant (in £) solution corresponding to the solution already found (given
in the first column). Written as a function of , the main term in each amplitude
factor of this solution is given in the second column of table 3.

If we write the system of equations in terms of the new independent variable
{ = (x—x,) o (instead of the variable £ above) and then let o — oo, the system be-
comes agymptotically a non-singular system of fifth order. This has a third even
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solution in addition to two even asymptotically constant (in §) solutions corre-
sponding to the two even solutions already found (given in the first two columns of
table 3). Written as a function of z, the main term in each amplitude factor of this
solution is given in the third column of table 3.

So much for the equations in the plasma. As for the equations in the vacuum,
they are easily solved exactly, the amplitude factors being given in the fourth column
of table 3. (The similar mathematical solution with exponent of opposite sign
becomes infinite as x - oo and is therefore excluded.) . R

The surface equations give 4 = 9, 7, = —ikw19,, j* = jF = 0, & = 0, and the
four joining conditions

ﬂ@ B

p-2Poy _o, Re—fr, BP=RY, Bryop - B (37)

Zow Zow
where all the amplitude factors are to be evaluated at = z,, the superscripts P
and V distinguishing between plasma and vacuum quantities respectively. Now,
the solution in the plasma is a linear combination of the independent solutions given
in the first, second and third columns of table 3, say with coefficients a,, a, and a,4
respectively, and the solution in the vacuum is a multiple of the solution given in
the fourth column, say by a,. Equations (37) thus give four linear homogeneous
equations for a,, a,, a; and a,. Asymptotically as o —co the condition that these
have a non-trivial solution becomes

2a
A

Zogr — o, (38)
and the solution itself becomes !
ay=— 2y 1+ 1) (1 + 20)7 (2w 2 —yan ') e p'ay,
ag = ikxd(l + 2a)~ 2 w2y~'¢'a,, (39)
ay = (1 +2a) w1z d'ay;

in equations (38) and (39) ¢ and ¢’ are to be evaluated at x = x,,

The characteristic time constants w are determined by the eigenvalues w? of
the differential equation {36) subject to the boundary conditions ¢ = 0 at = 0
and (38) at x = z,. Any such eigenvalue is real and negative; in fact, it is easily seen
that w? < — k2r3. Thus w is purely imaginary and the elementary solutions we have
found are oscillations of constant amplitude.

We are interested in these solutions only as examples of perturbations in plasmas
with large but finite o. According to equations (35), v is a positive real multiple of
(1+i)ot and A of +io. Hence, the second particular solution listed in table 3
decreases exponentially from the plasma boundary inwards, and the more rapidly
the larger o is. If our solution were carried through to the next order terms in o,
presumably A would contain a positive real multiple of o, so that the third particular
solution listed in table 3 would drop off similarly away from the plasma boundary.
Thus, the second and third solutions may be taken as describing skin phenomena.
Indeed, in the limit of ¢ - oo, the only quantities in these two particular solutions
which remain of physical interest are j, of the second solution, which contains a
factor v and hence converges to a finite sheet current equal to —j,x,. and € of the
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third solution which contains a factor A and hence converges to a sheet charge equal
to yaw?j,/w. It may be mentioned that this whole case was also computed through
with o = oo from the start, and the solutions were entirely what would be expected
as the limits of the solutions of the general case, including sheet quantities of just
the right magnitudes.

This example of a perturbation in a plasma with finite but large conductivity
seems therefore to indicate that the essential features of the type of problems here
considered are fairly represented if one assumes infinite conductivity but simul-
taneously allows for electric sheet currents and electric sheet charges at the surface
of the plasma.

6. SUMMARY

In this paper, two types of instabilities have been discussed for highly conductive
plasmas in magnetic fields. The first type of instability arises in a plasma which is
supported against gravity by magnetic pressure. Such a plasma is found to be
unstable against perturbations which move the magnetic lines essentially parallel
to themselves but do not bend them seriously. This instability is found to be of the
same type and of the same speed of development as the well-known instability of
a heavy fluid supported against gravity by a lighter one.

The second instability arises in the well-known pinch effect, i.e. for a plasma
which is contained within a cylinder by toroidal magnetic fields which in turn are
caused by electric currents within the plasma parallel to the cylinder axis. Such
a plasma is unstable against perturbations which distort the cylinder into a
sinusoidal tube (figure 2). The e-folding time of this perturbation is roughly equal
to the time a sound wave travels a distance equal to the wave-length of the
perturbation.

These two instabilities are computed through under the approximation of infinite
conductivity, with proper allowance for electric currents and charges on the
surface of the plasma. The belief that this approximation is in fact adequate has
been strengthened by investigating a particularly simple case in which some sample
perturbations could be computed through under the assumption of large but finite
conductivity.

We are happy to acknowledge our indebtedness to Dr Lyman Spitzer, Jr, for his
constant advice and in particular for suggesting the possible existence of the
instabilities here investigated.
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The stability of a plane current layer is analyzed in the hydromagnetic approximation, allowing
for finite isotropic resistivity. The effect of a small layer curvature is simulated by a gravitational
field. In an incompressible fluid, there can be three basic types of “resistive’”’ instability: a long-wave
““tearing”’ mode, corresponding to breakup of the layer along current-flow lines; a short-wave “rip-
pling” mode, due to the flow of current across the resistivity gradients of the layer; and a low-g
gravitational interchange mode that grows in spite of finite magnetic shear. The time scale is set by
the resistive diffusion time rp and the hydromagnetic transit time rg of the layer. For large S =
i/, the growth rate of the “tearing’’ and “rippling”’ modes is of order rg~3/87y~2/5, and that of the
gravitational mode is of order 7g137y~2/3. As 8 — o, the gravitational effect dominates and may
be used to stabilize the two nongravitational modes. If the zero-order configuration is in equilibrium,
there are no overstable modes in the incompressible case. Allowance for plasma compressibility
somewhat modifies the “rippling”’ and gravitational modes, and may permit overstable modes to
appear. The existence of overstable modes depends also on increasingly large zero-order resistivity
gradients as 8§ — «. The three unstable modes merely require increasingly large gradients of the
first-order fluid velocity; but even so, the hydromagnetic approximation breaks down as § — «.
Allowance for isotropic viscosity increases the effective mass density of the fluid, and the growth rates
of the “tearing”’ and “rippling’’ modes then scale as 7y ?/rg~' /3, In plasmas, allowance for thermal
conductivity suppresses the “rippling’’ mode at moderately high values of S. The “tearing’’ mode can
be stabilized by conducting walls. The transition from the low-g ‘“‘resistive” gravitational mode to the
familiar high-g infinite conductivity mode is examined. The extension of the stability analysis to
cylindrical geometry is discussed. The relevance of the theory to the results of various plasma experi-
ments is pointed out. A nonhydromagnetic treatment will be needed to achieve rigorous correspond-
ence to the experimental conditions.

I. INTRODUCTION

PRINCIPAL result of pinch''* and stellarator®
research has been the observed instability of
configurations that the hydromagnetic theory*:®
would predict to be stable in the limit of high

1 S. A. Colgate and H. P. Furth, Phys. Fluids 3, 982 (1960).

z K. Aitken, R. Bickerton, R. Hardcastle, J. Jukes, P.
Reynolds, and S. Spalding, JAEA Conference on Plasma
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Austria, (1961), paper 68.
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Fusion Suppl., Pt. 1, 193 (1962).

¢ I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M.
Kulsrud, Proc. Roy. Soc. (London) A244, 17 (1958).

®*W. A. Newcomb and A. N. Kaufman, Phys. Fluids 4,
314 (1961).

electrical conductivity. In order to establish the
cause of this observed instability, the extension
of the hydromagnetic analysis to the case of finite
conductivity becomes of considerable interest.

A number of particular “resistive’” instability
modes have been discussed in previous publications.
Dungey® has shown that, at an z-type neutral point
of a magnetic-field structure in plasma, finite
conductivity can give rise to an unstably growing
current concentration. By Dungey’s mechanism, a
sheet pinch can tear along current-flow lines, so as

8J. W. Dungey, Cosmic Electrodynamics (Cambridge
University Press, New York, 1958), pp. 98-102.
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to form discrete parallel filaments.”* This “tearing”
mode is purely growing and is symmetric about the
midplane of the sheet pinch.

Murty® has analyzed the case of a very-low-
conductivity incompressible fluid slab of finite
thickness, and has found two purely growing modes:
the symmetric “tearing”’ mode; and an asymmetric
“rippling”’ mode. In the latter case, the conductivity
gradient at the edge of the slab permits current
channeling into first-order “ripples” that run at an
angle with respect to both the zero-order current and
the zero-order magnetic field. The resultant motor
force amplifies the ripples.

Aitken et al.”*'° have treated cylindrical geometry,
and have found a purely growing (helical) “rippling”
mode in the very-low-conductivity limit. In the
high-conductivity limit, they find an overstable
“rippling” mode.”'' The ripples in the latter case
run in the direction of the mean zero-order current.
The existence of overstability depends on the
compressibility of the fluid and on large resistivity
gradients.

The instability of the positive column'®*'** is
somewhat related to the instability of fully ionized
plasmas of finite conductivity. Kadomtsev and
Nedospasov'* have demonstrated a “rippling”” mode,
which is purely growing in the rest frame of the
electrons, but is overstable in the laboratory frame.
The extension of this mode to fully ionized plasmas
has been considered by Hoh,'* Kuckes,'® and
Kadomtsev."”

In the present analysis, general equations are
derived for the plane resistive current layer in the
incompressible hydromagnetic approximation. A
dispersion relation is obtained in the limit of high
conductivity that describes purely growing modes
of the ‘“tearing” and ‘“rippling” types. An inter-
change mode driven by a gravitational field per-
pendicular to the plane layer is also included.

The analysis for the plane current layer is partic-
ularly significant in the high-conductivity limit,
since the problem then separates into the analysis

7 H. P. Furth, Bull. Am. Phys. Soc. 6, 193 (1961).

# J. Killeen and H. P. Furth, Bull. Am. Phys. Soc. 6, 309
1961).
( ’G S. Murty, Arkiv Fysik 19, 499 (1961).

10 K, Aitken, R. Bickerton, S, Cockroft, J. Jukes, and
P. Reynolds, Bull. Am. Phys. Soc. 6, 204 (1961)

1 J, D. Jukes, Phys. Fluids 4, 1527 (1961).

1 F. C. Hoh and B. Lehnert Phys. Fluids 3, 600 (1960).

13T, K. Allen, G. A. Pauhka.s, and R. V. Pyle, Phys. Rev.
Letbers 5, 409 (1960)

B. Kadomtsev and A. V. Nedospasov, J. Nuclear
Energy Part C, 1, 230 (1960).
B F C. oh Phye Fluids 5, 22 (1962).
BAF. Kuckes, Phys. F luids (to be published).
17 B, B. Kadomtsev, Nuclear Fusion 1, 286 (1961).
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of two regions: (1) a narrow central region, where
finite conductivity permits relative motions of field
and fluid, and where geometric curvature may be
neglected; (2) an outer region, where field and fluid
are coupled as in the infinite-conductivity case,
and where generalizations to nonplanar geometry
can be introduced as desired.

In Sec. IT the problem is delineated and the
basic assumptions and equations displayed. In
Secs. III-V a formal mathematical solution is
developed. In Sec. VI the basic physical mechanisms
are discussed and a simple heuristic derivation and
summary of the results is given. For those not
interested in mathematical details or preferring a
preliminary physical discussion, it is suggested that
Sec. VI be read prior to Secs. ITI-V. Section VII is
devoted to a comparison with experiment. The
effects of various generalizations and extensions
of the basic problem are considered in the appendixes
as follows: Appendix A. Compressibility; Appendix
B. Low-Conductivity Limit; Appendix C. Short
Wavelength; Appendix D. Long-Wavelength Limit;
Appendix E. The Transition to the «-Conductivity
Limit of the Rayleigh-Taylor Instability; Appendix
F. Thermal Conductivity; Appendix G. External
Conductors; Appendix H. Viscosity; Appendix I.
Cylindrical Geometry.

II. ASSUMPTIONS AND BASIC EQUATIONS

We treat an infinite plane current layer specified
by

B, = B.o(y) + 2B.o(y) (1

The following assumptions are made.

1. The hydromagnetic approximation is assumed
to be valid, and the ion pressure and inertia terms
are neglected in Ohm’s law.

dB/dt = V x(vxB) — V x [(n/4r)V xB]. 2)
As the analysis will show, these assumptions are
violated in the treatment of a plasma of sufficiently
high conductivity, since the “resistive’’ modes then
develop increasingly sharp discontinuities, and we
must expect “finite-Larmor-radius” effects. Plasma
stability in the limit of high but finite conductivity
(the limit of maximum practical interest) thus
depends critically on nonhydromagnetic effects.
An isotropic resistivity 5 is assumed in Eq. (2),
and the mass of the electrons is neglected. It is of
interest to note that inclusion of the electron-inertia

term in Ohm’s law gives rise to a “tearing’’ mode in
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the collisionless limit'® that is analogous to the
“resistive tearing”’ mode considered here.
2. The fluid is assumed to be incompressible.

Vv =0 3)

In the high-conductivity limit the effect of com-
pressibility on the fluid dynamics is negligible.
(See Appendix A.)

3. Viscosity is neglected, so that the equation of
motion may be written as

V x(p dv/dt) = V x[(1/4x)(V xB) xB + go] (4)

where p is the mass density and g the acceleration
due to gravity. As usual, the gp term may be
interpreted as resulting from acceleration of the
current layer, or from the interaction of a plasma
pressure gradient and a slight curvature of the
current layer.'® The effect of viscosity is discussed
in Appendix H.

4. Perturbations in plasma resistivity are assumed
to result only from convection.

/0t + v-Vy = (5)

The neglect of thermal conductivity along magnetic
field lines, however, becomes important for a
high-temperature plasma,'” and we must then use
the equation

77 B-V

—;1 + vV = . (59)

(KB VT)
where « is the coefficient of thermal conductivity
along magnetic field, n is the particle density, and
T the temperature. The associated stabilizing effect
against the “rippling” mode is discussed in Appendix
F. The neglect of Ohmic heating in Eq. (5) is
unimportant in the high-conductivity short-wave-
length limit. For low-conductivity plasma, a small
amount of Ohmic heating due to first-order currents
tends to accelerate the “rippling” mode and retard
the “tearing” mode. If the Ohmic heating is suffi-
ciently strong to reduce the local electric field at a
current concentration, a trivial type of “tearing”
instability results that depends primarily on thermal
rather than fluid transport effects. The effect of
plasma compressibility on Eq. (5) is discussed in
Appendix A.

5. Perturbations in gp are assumed to result only
from convection

o(gp)/3t + v-V(gp) = (6)
In the presence of a neutral background gas, the
18 H, P. Furth, Nuclear Fusxon Su pl., Pt. 1, 169 (1962).

1 M. N. Rosenbluth and ongmlre, Ann. Phys.
N. Y. 1, 120 (1957).
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first-order currents may, however, give rise to an
additional density perturbation by an increase in
the local rate of ionization. This mechanism may
have a destabilizing effect.”* The effect of com-
pressibility is discussed in Appendix A.

6. The zero-order distribution will be assumed
to have v, = 0. Strictly speaking, this condition
implies

V % (70V xBy) = 7)

which will be referred to as the standard case.
For modes with sufficiently large growth rates and
wavelengths, however, the approximation of null
zero-order velocity is valid even if Eq. (7) is not
strictly satisfied, since the values of v, to be ex-
pected are those of ordinary resistive diffusion. Some
of our results will therefore be presented in their
most general form, without invoking Eq. (7).

Denoting perturbed quantities by the subscript 1,
hx, 9 = fi(y) exp itz + k.2) + wi]

we obtain to first order the set of equations

= V x(v, xB,)
— (1/4m)V %[V xB, + 0,V xB,],  (8)
wV xpv, = V x{(1/4m)[(Bo- V)B,
+ B.-V)Bo] + ®n)}, (9
Vv, = VB, = (10)
om + (V- V)n = 0 (1
w(@e) + (v V)(gp)o = 0 (12)

From this set of equations, we may separate two
that involve only B,, and v,,. Equations governing
the remaining first-order quantities (not needed in
the present analysis) are given in Appendix A.
In dimensionless form, we have

Fodir )+ a(g) o

(GW")’ [ 8¢ | F§® (F 7' F :l
st =Wsi—-——=+— |+ —
& P pz + » \7 + "I'P)

+ ws’(g - %) . as

where
v = Bvl/B7 W= —ivvlkTRp
F = (krBzo + sztD)/kBy k = (k: + ’Cf)!,

a = ka, TR = 41!'(12/(77), g = a(4T<P>)!/B

20 C, L. Oxley, General Atomic Report GAMD-2635 (1961).
21 3, A. Colgate (private communication).

79



462
F~K.By
P—. L) ! o
B, -
—— % v
= ) \
i "Tl ™ =

(a) (b)

Fig. 1(a) Equilibrium configuration of sheet pinch. (b)
Form of the perturbation.

S = 73/75) D= W7y, 7= "70/(7’):

5= p/(p), G = tad,.

The primes denote differentiation with respect to a
dimensionless variable u = y/a, where a is a measure
of the thickness of the current layer. The quantities
B, (), and (p) are measures of the field strength,
resistivity, and mass density respectively. The
quantity 4, may be interpreted as —(g/po) 9po/dy
for the gravitational-field case; or as —(1/po)
3(poty) /3y for a current layer with zero-order
acceleration 0,; or very roughly as — (1/72)(a’/4R,)
3B,/ 9y for a current-layer of mean radius of magnetic
curvature R, and plasma pressure P, where 8, =
4xP,/B®. The latter application is discussed in
detail in Appendix I.

For thermal plasmas, we have approximately
S ~ 0.1aT?8;}, with T in eV. The parameter S
exceeds a-hundred for most present-day hot-plasma
experiments and must become much larger yet in
experiments of thermonuclear interest. Accordingly,
our primary interest will be in the case § — .
Note that the growth rate p is expressed in units
of the resistive diffusion time.

Only one component of the B, field, namely
k(k-B,) appears in Egs. (13) and (14). For any
given B, field having finite shear, we may choose
k so that k-B, ~ F passes through a null. The
typical u-dependence of F and 5 that will be con-
sidered here is illustrated in Fig. 1(a).

The zero-order equilibrium condition of Eq. (7)
may be written as

#/DF" = —F". (15)

The usual boundary conditions are that both ¥
and W should vanish at infinity or at conducting
boundaries, located at p = u,, p,.

III. GENERAL REMARKS

Nonexistence of Overstable Modes

Equations (13) and (14) can be solved in the limit
8 — =, to give an oscillatory mode [Re (p) = 0].
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Expanding about this solution in powers of S,
one finds that, when Im (p) > 0, either Re (p) =
O(1) (so that the growth rate is insignificant);
or else the zero-order current layer must have sharp
resistivity gradients, which become increasingly so as
S — . In a more general analysis, including
plasma compressibility, etc., we would expect the
same result. This follows since the equations can
always be expanded in powers of S7°, as long as
the zero-order conductivity is large everywhere and
has finite gradients. Thus the modes of greatest
practical interest are new modes that do not exist
at all for § = . The situation is similar to that for
hydrodynamic shear-flow stability at high Reynolds
number.”

In the incompressible case, we can show that no
overstable modes exist at all, provided that non-
equilibrium zero-order configurations are excluded
by requiring Eq. (7) (or 15) to be satisfied. This
condition is appropriate for configurations with
sharp resistivity gradients, since the zero-order dif-
fusion velocity could not otherwise be neglected.
For convenience, we will use a definition of the
quantity (n) such that 4F’ = 1. Equations (13),
(14) can then be rewritten in the form

07%227 [(ﬁW’)’ + aﬁw(—;g - p)]
=@v+wr(pr -5 ag
=py’ — w(a’ + EF—) an

Equations (16) and (17) yield the condition
" 22 [- 7|2 2 2(*_@)]
j;. du {lpla PEXE pIW+ o W5 pz

EF/ _ Fll/F v ( R EZ)Z
+ pr' — F”/F‘z 12 e + F

+ WP+ h;t’(a’ + %)} = 0.

Taking the imaginary part of Eq. (18), we find
that if Im (p) > 0, then Re (p) < 0.

(18)

Characteristics of Unstable Modes

We will devote primary attention to those un-
stable modes for which § — « and p ~ S' where
0 < ¢ < 1. The lower limit on ¢ corresponds to a
growth rate that is of the same order as the rate
of resistive diffusion, and is therefore insignificant.
The upper limit on ¢ is reached only by modes that
exist also in the standard infinite-conductivity
treatment.
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Since the growth rates of the modes to be con-
sidered are slow compared with the hydromagnetic
rates, the flow is subsonic; i.e., the incompressibility
approximation is satisfactory (cf. Appendix A).
On the other hand, since the growth rates are fast
compared with resistive diffusion rates, the effect
of Ohmic heating is negligible.

A discussion of unstable modes in the limit
S — 0 is given in Appendix B. It is shown that in
this limit the growth rates approach hydromagnetic
rates.

For unstable modes, all quantities in Eq. (18)
are real. In the limit 8 — =, Eq. (18) can be
satisfied in three distinct ways, each corresponding
to a negative contribution from one of the three
terms: (1) if @ > 0, there can be gravitationally
driven modes; (2) if ¢ is peaked near the point
F = 0, and if we can have F"'/F > 0 at this point
(ie., if n' 5 0 there), then there are modes cor-
responding to the “rippling” instability; (3) since
F"/F is predominantly negative, for sufficiently
small o’ there are modes corresponding to the
“tearing’’ instability.

The behavior of the solutions over most of the
range in u can be established on a general basis.
As § - =, we must have

py ~ —FW (19)

everywhere except in a small interval near F = 0.
This condition follows from the consideration that
either W or ¥ would diverge strongly at large u if
the right-hand term in Eq. (16) were either negative
or positive except in a small interval. Eq. (19) is,
of course, the condition that the fluid remains
“frozen” to magnetic field lines.

Using Eq. (19), we then see from Egs. (16) and
(17) that the (infinite-conductivity) equation

V' — Y’ + F"/F — G/F) =0 (20

must be satisfied everywhere except in a small
interval. The general procedure in the § — o,
0 < ¢ < 1 limit is therefore as follows. We obtain
solutions to Eq. (20) that vanish at u = u,, u,,
the external boundaries. These solutions cannot,
in general, be joined without a discontinuity in ¢/,

A= i/ — Wi/, (21

where the subscripts refer to values on either side
of the point of juncture. The typical behavior of
¥ is illustrated in Fig. 1(b). The discontinuity in
¥'/¢ corresponds to large local values of ¢"/. From
Eqgs. (16) and (17) we see that such values can be
obtained only near the point F = 0. Equation (13)
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implies that large local values of W are also obtained
near the same point and only there. The second stage
of the general solution therefore consists in solving
for y and W in a small region R, about the point
F = 0, with the boundary conditions that ¢’/
matches the solutions of Eq. (20), and that W is
well behaved outside the region R,.

In more formal terms, we may say that Eqs. (19)
and (20) provide an asymptotic solution of Eqs. (16)
and (17), which breaks down near F = 0. We note
that if F 0 everywhere, then Eq. (20) applies
throughout, and there is no solution unless G/ (F’)* =
O(1), in which case the layer is unstable even in the
S = o limit.

The argument of this section has, for reasons of
convenience, made use of Eqs. (16) and (17), which
refer specifically to the standard case [i.e., Eq.
(15) holds]. The conclusions can, however, be
extended to more general choices of F, if desired.

IV. SOLUTIONS IN THE OUTER REGION

We assume that Eq. (20) holds everywhere
outside a small region R, with a width of order ¢,
around the point p, at which F = 0. Eq. (20) is to be
solved subject to the boundary condition y = 0
at the points u,, u;, which we will take for con-
venience at Fo. We will calculate the quantity
A’ of Eq. (21) for the case ¥, = ¥, which is of
principal interest in Sec. V. Equation (20) yields
the expression

— __1_ ° —alul E
% wlf_md"e v

q

+ O[Uv)—eo]
Note that when F”’ # 0 at u,, there is a singularity
in the integrand on the right side of Eq. (22).
Difficulties arising from the corresponding loga-
rithmic singularity in ¢’ are avoided here, since we
consider only A’ instead of the individual values
of ¥/ and ;. In this and the following section we
will restrict ourselves to the case where |G|/(F’)® is
sufficiently small so that the G term in Eq. (22)
can be neglected. The case of larger @ is discussed
in Appendix E.

Tor the case & >> 1, one obtains from Eq. (22)

A" = —2a + O(1/a). @3)
For the case o’ < 1, we expand
V= """ Yoy + apay + oY )
and find
—(WwF’ = ¥mF) = 2l = pol/(e = o) IF -y

A=

(22)
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The well-behaved solution is characterized by
Vo = ’F’
and near the point u, by
VYar = Fo/F', p < po; Yoy = FofF', u > po. (25)

In calculating A’, the derivative of ¥, may be
neglected, though it has a logarithmic singularity
at po, since the contributions it makes near u,
cancel out, and the rest is of order a. Thus we obtain

A = (1/a)(F)’(1/F%.. + 1/F%). (26)

In the case of symmetric F”/F, it will be of interest

to obtain A’ for arbitrary «. For this purpose it is
convenient to choose specific models. When

F = tanh 4, @7

then Eq. (20) may be solved explicitly in terms of
associated Legendre functions, and we have

(29

A = 21/a — a). (28)
When
F=yp, [w<1l; F=1, p>1; 29)
F=-1, p< —1;
we have
T o= %[%]- 30)

Note that A’ goes monotonically from « to — =
as a goes from 0 to . There is a null of A’ at the
point @ = a,, which occurs at 1 and 0.64 respectively
for the models of Eqgs. (27) and (29).

V. SOLUTIONS IN THE REGION OF
DISCONTINUITY

Basic Equations

In the small region R, about the point u, we may
take the quantities F’, F’, 9, 7', G, and 5 in Egs. (13)
and (14) to be constant. We may approximate F
as F'(u — mo) and neglect the term 5'W’ relative
to pW".

Defining a new independent variable

0= (1/9)(u — uo + 7'/2p), (31)
Eqgs. (13) and (14) may be written as
&y/de* — Eo°y = Qldy + U6 + 8)], (32
QU/dE + U — 16) = ¢(0 — 3),  (33)
where
e = [pip/4’ S(F)E, (34)
U = W(4eF' /p), 35
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Q = pe/47, (36)

6 = (1/4QF"/F" + 7'/24), @7

& = (1/89)(7'/7), (38)

A = (#)/16€p" + S°¢G/p*s — €. (39)

Note that in the standard case [cf. Eq. (15)] we
have § = —3,.

Let us expand U in terms of normalized Hermite
functions

U= 2 au, 40
n=0
where
d'u,/d6> + n + 3 — 16%u, = 0 (41)
and
(=D e d™ _gee
u, = —~}——;(2T) ) et FT LA (42)
Then Eq. (33) can be written in the form
IS S _
G = Ty L e = 9. @Y

Equations (32) and (33) are valid over the range
(& — mo)® < 1. We will apply these equations over
a region R, of width ¢, outside of which Eqs. (19)
and (20) are to be valid. From Egs. (32) and (33) it
follows then that we must require ¢, > e.

The most important class of unstable modes
corresponds to the approximation ¢ = const in R,.
For this case we obtain the “tearing” and “rippling”
modes over a range of « consistent with ¢, [¢//¢ | < 1
in R,, or roughly

6 |A'] < 1. (44)

Using the requirement ¢, > ¢ and the results of
Eqgs. (23) and (26), we may rewrite Eq. (44) as

(F(1/F0+ 1/F%) < a < 1/2  (44a)

For ¢ = const in R, we also obtain the low-G
gravitational interchange mode. Sufficient condi-
tions for the constancy of ¥ and for the negligibility
of the G term in Eq. (20) are provided by Eq. (44a)
together with the requirement that |G|(F")™* be
small eompared with ¢, or compared with e |A’|
when [A’] >> 1. In Appendix E, we will show that
the condition on G can in general be relaxed con-
siderably. We may take ¢ to be constant over
e = (1 + |A])”". Then the G term in Eq. (20)
will be small (when G > 0), provided that we have

G/(F") <} (45
and
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G/(F..)’ < o (45a)

We note that Eq. (45) is equivalent to the well-
known Suydam criterion for instability of an
infinite-conductivity plasma at short wavelengths.

Solutions with Constant ¢

If ¢ = const and Eqs. (44) and (45) are satisfied,
we obtain from Egs. (32) and (43)

[fi 6, u(6, + 8,) [f_: 40, u,(6; — a)]-' (46)

Using the integrals
- 4
f dé, u, = 2’[£ﬂ * %)] (n even);

(3n + 1)
=0 (n odd);
f dé, 6u, =0 (n even),
= 9% G3n + 1) .
= [I‘(ln T l)_] (n odd);
we obtain the eigenvalue equation

' _ o1/2 —~ I'(m + })
A= 200 T )

[ A—3% _ _ 8s/4 ] )
A-@m+d A-Cm+ Dl

where A’ is determined by the “outside’” solutions
(cf. Sec. IV). We have replaced even n by 2m and
odd n by 2m + 1. The series is convergent, since
terms for large m go like m™. [Note, however,
that if we had calculated ¢’ |7, we would have
obtained a divergent result, proportlonal to

) mz-o pont

Since (6, — &) ~ F"/F’, and ¢ ~ m, we may
identify this divergence with the logarithmic
singularity indicated by Eq. (22).]

The sums can be evaluated as hypergeometric
series of argument 1 to give

oz of TG = 34) gs_l g - iA):l'
A =2 ”9[1"(} Y + 8 TG — 1A) (47a)

A form that is sometimes more convenient is

s or - ()]

_ 9/2 P(A_
= 72 QI‘(I —

34) .

Ty am
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The following general remarks can be made
about the solutions of Eq. (47).

1. If 85, < O (the most common case), then A’/Q
goes from « to — ® as A goes from 1 to 2, from
§ to §, ete. The quantity , related to A by Eqs. (36)
and (39), is finite for finite A. Hence for any given
A’ as obtained from Eq. (21), there is an infinite
sequence of eigenvalues A ~ 1, 2, 3, --- . There is
also an eigenvalue below %, which moves to 0 as
A" — o, while 2 becomes large.

2. If 86, = O then A’/Q goes from o to — =
as A goes from 2m + 3 to 2m + %. The sequence
of eigenvalues is A ~ 2, 4, 6 --- . There is also an
eigenvalue below 3.

3. If 0 < 85, < A then A’/Q covers almost the
entire range from « to — = as A goes from 2m + $
to 2m +3% . The excluded interval is

|a7/Q| < 4m(86,)}. (48)

For A’/Q outside the excluded interval, there is
also an eigenvalue below .
4. When [A| < %, Eq. (47) reduces to

= Q12 + 13 84,). (49)

In that case @ is to be determined by the value
of A’ in Eq. (21), and the condition on A is to be
verified by means of Eqgs. (36) and (39). Evidently
this case arises only for positive A’.

We can now identify a number of basic modes.

The ‘Rippling” Mode

The “rippling”’ mode is characterized by the
finiteness of A and the predominance of the (»’)?
term on the right side of Eq. (39). In that case

- [T

A7 (50)

@ = |i]/1674}, (51)

5 = 244, (52

e = |7'|/4pA*. (53)

In the standard case we have 85, = —4A, and the

remarks made above in paragraph 1 then apply to
the A spectrum. (For other reasonable choices of
88, < 0, the A spectrum is modified only slightly.)

In the limit & > 1, which according to Eq. (23)
corresponds to large negative A’, we find that the
eigenvalues A lie slightly below the points 1, %,
$, -+ . For the fastest growing mode, which cor-
responds to a solution U that is basically symmetric
near p,, we have A = }. As we move towards the
other limit, « < 1, (i.e., large positive A’) the
eigenvalues that were slightly below 3, §, - - - move
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to points slightly above 1, %, ... . The fastest
growing mode of this series again occurs for A & ,
and corresponds to a basically symmetric U in the
neighborhood of u,. From Eq. (50) we see that the
growth rates of these modes become small as a — 0.
The eigenvalue lying below 1 moves toward 0 as
a — 0. This mode goes over into the “tearing” mode
(see below); the associated U becomes antisym-
metric, and the growth rate becomes large as « — 0.

If we depart from the standard case and consider
the limit & = 0, 8, # O (cf. paragraph 2), the eigen-
values near 4, 3, 3, --- disappear. If 88, > 0 (cf.
paragraph 3), there is no solution for [A] <K 1,
but for large or small a there are eigenvalues near
%y %v g’y .

Using Eqgs. (50) and (53), we may express the
condition of Eq. (44) as

P5(F")" (_1_ L)] [S’m')’A*]*
[16S’A‘(ﬁ'>‘ ot E) ) << el 1
The behavior of the “rippling” mode for larger
a is discussed in Appendix C.

As we have noted in Sec. II, paragraph 4, the use
of Eq. (5) to give the first-order resistivity becomes
inaccurate for a high-temperature plasma, where
thermal conductivity along magnetic field lines is
highly effective. For the “rippling”’ mode, which
depends critically on the nature of the resistivity
perturbation, the growth rate is then actually much
smaller than would be indicated by Eq. (50).
An estimate of the correction factor is given in
Appendix F. .

The stabilization of the ‘“rippling” mode by
gravitational effects is discussed in the section on
the gravitational mode.

The “Tearing” Mode

The “tearing’’ mode is characterized by the
condition [A| < } (cf. paragraph 4). Eq. (49) shows
that this mode is limited to positive A’, i.e., to
a < a, ~ 1 [cf. Egs. (28) and (30)]. The growth
rate is obtained from Egs. (34) and (36):

p = 48757 ||, (54)

and the condition on A can be expressed by means
of Eq. (39):

1 n_) PG ]
o [(lﬁﬁ + 647(F) < 1. (55)
For @ << 1, we have from Egs. (26) and (49)

_L lz(L _1_>
= 1 PN\, t 72

A=

(56)

so that
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P = (F) (Qaﬁ; Fia + F: . (57)

The fastest growing mode is generally obtained for
the ‘“‘symmetric case’”’ where F”/ = 0 at F = 0.
A lower limit to « is set by Eq. (44)

_L_ _1- ;”;} lFI 9)*
a> (F’_m + Fi)( 338 /- (58)

The maximal growth rate p, thus goes as S
(Appendix D treats this limit by a method that
avoids the constant —y approximation but confirms
the present result for p,,.)

If the current layer is perfectly symmetric, so that
the nulls of 7’ and G occur at the same point u = 0,
Eq. (55) is always satisfied for a mode where u, = 0.
More generally, we see that the (n)* term in Eq. (55)
is always negligible for « < 1. The effect of the
gravitational term when G = 0 at u, is discussed in
the next section.

For modes of the “tearing” type, the solution U is
basically antisymmetric, since the 7’ terms can
usually be neglected by symmetry or because a < 1.

The Gravitational Interchange Mode

The gravitational interchange mode is char-
acterized by the finiteness of A and the predominance
of the G term on the right side of Eq. (39). Instability
is obtained for @ > 0, and the appropriate growth
rate is

p = (SeG7t/2A |[F'| HY. (59)

The magnitude of G for which Eq. (59) holds is
restricted by Egs. (45) and (45a).

To evaluate A, we note from Egs. (36) and (39)
that Q is given by

Q = G/16eA(F")*.

For 88, < 0, Eq. (47) gives a series of eigenvalues
A lying in the intervals } to 2, $ to §, etc. There may
also be an eigenvalue in the interval 0 to %, if A’/Q
is not too large. Unless G(F")"* is of order e or less,
the quantity Q is generally very large, so that
|A"|/2, 88,] < 1. In that case the eigenvalues lie
at 3, $, %, etc.

If 85, = 0, there is a series of eigenvalues lying
in the intervals 3 to %,  to %, etc., and there
may also be an eigenvalue in the interval 0 to 3,
if A’/Q is not too large. For |A’|/Q < 1, we have
A =4, 3, 3, etc. These eigenvalues are obtained for
example, for pure gravitational modes with G(F")~*
finite as S — =,

We now consider the effect of the G term on the
growth of the “rippling’’ mode. The condition that
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the resistivity-gradient term should be dominant on
the right side of Eq. (39) is

p < (F)(F')/47 |G| (60)

so that, unless G = 0, the gravitational term always
predominates in the limit S — o, p — «. If @ > 0,
then instability continues above the limit set by
Eq. (60) in the form of gravitational modes or
mixed ‘‘gravitational-rippling”’ modes. If @ < 0,
there are no gravitationally driven modes, and
Eq. (60) then sets an upper limit to the growth
of all short-wave interchange instabilities.

We next consider the effect of the G-term on the
growth of the ‘‘tearing’’ mode, neglecting the
resistivity gradient terms (cf. the preceding section).
Using Eqs. (34), (36), and (39) we find that

p = £AQLH(F)/G. (61)
If @ > 0, then the “tearing”’ mode, which is char-

acterized by A < 1 and by the consequent applic-
ability of Eq. (49), is restricted by the condition

p < 27(A)'(F")*/9G. (62)
As S — =, p— =, Eq. (62) is violated, A moves up
toward 2, and we have the gravitational or mixed

“gravitational-tearing’” mode. If G < 0, then A is
negative, and Eqs. (47) and (61) yield the condition

P < WA (F)/17 |G| (62a)

in the limit § — «. Eq. (62a) then sets an upper
limit to the growth of long-wave instabilities.
[We note that in the present analysis the quantity
G(F')™? is limited by Eq. (45a), so that for extremely
small « Eq. (62a) is not very restrictive.]

We may summarize the gravitational effects
qualitatively in terms of four characteristic ranges
of G.

I. @ < 0. The gravitational force is stabilizing.
For finite |G|(F’)™* essentially all the resistive
instabilities are suppressed in the limit S — o
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i.e., we have p ~ S° for the “rippling’’ and “tearing”
modes.

II. G = 0, or at least GS*® < 1. In this case
we may have the pure “rippling”’ or “tearing’’ modes
with p ~ S**,

III. G > 0, but not large enough for infinite-
conductivity instabilities. In this case we have
p ~ S8t

IV. @ > 0 and large enough for infinite-con-
ductivity instabilities; i.e., G(F’)™®> > 1 for short-
wave modes. In that case, of course, p ~ 8.

VI. SUMMARY AND ELUCIDATION OF PRINCIPAL
RESULTS

In the high-S limit, a current layer with finite
gradients has three basic unstable modes and no
overstable modes. The approximate properties of the
unstable modes in their characteristic parametric
range are summarized in Table I. Here it has been
assumed that the dimensionless quantities F’, F”,
etc., are all of order unity. References are given to
the more exact equations of the main text, and to
supplementary material that more clearly defines the
range of validity of the analysis and extends it
somewhat. We will now discuss and rederive the
modes of Table I in heuristic terms.

The existence of the three “resistive’’ instabilities
depends on the local relaxation of the constraint
that fluid must remain attached to magnetic field.
For a zero-order field that is not a vacuum field,
possibilities of lowering potential energy are always
present; the introduction of finite conductivity
makes some energetically possible modes topologi-
cally accessible. In the case of the infinite-conduc-
tivity modes, lines of force that are initially distinct
must remain so during the perturbation. For the
three ‘resistive” modes, lines of force that are
initially distinet link up during the perturbation.
These modes have no counterpart in the infinite-
conductivity limit and disappear altogether, their

TaBLE I. Summary of approximate properties of unstable modes in the high-S limit.

Range of Growth Region of Relevant Valid Range of Supplementary
Mode Instability Rate p isc. e Equations Equations Equations
~2/7 2/3 (60)'
“Rippling”’ i %0 azisgen att871s (50)~(53) 'ISGI S s Appendixes
' 1/4 (62)'
“Tearing” a<l a-2/s8a0s a~8-2s (54)-(58) IGIS S ign '})P,Pé“‘g’“}“
td el
Gravitational _ ~
Interchange G >0 aBGABGES  oLsG-LiG e (59) A ‘{go);((g;
A GEHI
G > a-ﬂ /5S-’ Il’ a8 /5S-3/5
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(a)

(b)
F1c. 2(a) Perturbed fields and velocities—‘rippling”’ mode. Solid arrows indicate fluid velocity.

(c)
(b) Perturbed fields and

velocities—*“tearing”’ mode. (¢) Perturbed fields and velocities—gravitational mode.

characteristic times becoming infinite. The situation
is quite analogous to the new modes which occur in
hydrodynamics when the constraint of conservation
of vorticity is removed by the presence of finite
viscosity.

The growth rates of the ‘“resistive’” modes are
sufficiently small on the hydromagnetic time scale so
that the fluid motion is subsonic, i.e., incompressible.
This feature is of critical importance in simplifying
the analysis of the plane current layer: it permits
us to consider the magnetic-field and velocity
components within the ky plane independently of
the components in the direction 7 normal to the
ky plane. The reasons for this decoupling effect
are readily seen.

The coordinate along 7 is ignorable; therefore,
the field lines of the component B, in the 7 direction
are not distorted during the perturbation. The on'y
manner in which the magnitude of B, could affect
the motion in the ky plane is by way of the magnetic
pressure B}/8r. The gradients of this pressure,
however, merely tend to induce plasma compression
or expansion. An incompressible fluid automatically
provides compensating hydrostatic pressure gra-
dients, so that there is no net effect on the dynamics.
As for Ohm’s law, there the resistive diffusion term
does not couple the field components if the resis-
tivity is isotropic, and the convective term couples
the magnetic field and velocity components within
the ky plane to each other. Finally, the two equations
specifying B and v to be solenoidal hold as well for
the vector components in the ky plane taken alone.
Thus we have four equations for two unknown
two-component vectors, and we may restrict
ourselves in what follows to the analysis of the
two-dimensional problem. Typical field and velocity
components in the ky plane are illustrated in Fig. 2.
We note parenthetically that the convenient re-
ducibility of the three-dimensional finite-resistivity
stability problem is wholly analogous to the re-
ducibility of the finite-viscosity stability problem
of ordinary hydrodynamics.”

22 The similarity of the finite-resistivity and finite-viscosity
problems was first pointed out to us by E. Reshotko. For a
discussion of finite-viscosity instabilities, see C. C. Lin, The

Theory of Hydrodynamic Stability (Cambridge University
Press, New York, 1955).
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To understand the basic character of the unstable
modes, let us consider the mechanism whereby the
fluid resists detachment from flux lines. Starting
with Ohm’s law

7j = E + vxB, (63)

let us suppose that the fluid is moving but the
flux lines are not, i.e.. E = 0. Then we find j=
(v xB) /5, with a resultant motor force

F, = jxB = [B(v-B) — vB®|/y (64)

that opposes the fluid motion. In the limit 5 — 0,
this force, of course, prevents any separate fluid
motion from taking place. We note, however, that
the restraining force becomes arbitrarily weak near
the point where B vanishes, and this is the key
to the situation. Since the quantity B in the present
discussion refers only to the magnetic-field com-
ponents in the ky plane, we can generally select k
so that B has a null at any desired value of y.
We may expect that detached fluid motion can
take place within a region of order ea about such
a null point. For each unstable mode, we will find
a driving force F, that dominates the restraining
force F, within the inner region, and that is itself
dominated by F, outside this region.

We can relate the “skin depth” ea to the growth
rate of the instability. Since F, is comparable in
magnitude to F,, the rate at which work is done
on the fluid is given by

P~ —v-F, ~ v|(B')’(ea)’/n, (65)

where we have used B ~ B’ea. The driving force
gives rise to motion both in the § and k directions,
since V-v = 0. In general the instability wavelength
will be much larger than ea, and therefore the fluid
kinetic energy in the k direction is dominant.
Equating the rate of change of this energy to the
driving power, we have

wp ,/k*(a)” = vy(B')*(ca)’ /.
The skin depth is then given by

o {_wen |}
@ {k*<B')’}

which agrees with Eq. (34) when expressed in the

(66)
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appropriate dimensionless variables. To arrive at
the instability growth rates, we must next determine
ea by comparison of Fy with F,. For this purpose
we turn to consideration of specific modes.

In the “rippling”’ mode of Fig. 2(a), the circulatory
motion of the fluid creates a ridge of lower-resis-
tivity fluid into which the local current is channeled.
In other words, when a resistivity gradient exists,
Ohm’s law in its linearized form has an extra term

noji = —mijo + VxB, (67)
where 7, is given by the convective law
m = —V-Vn/o, (68)

and where E = 0 has again been used, as is appro-
priate within the small region of decoupled flow.
The », term in Eq. (67) gives rise to a motor force

Fi;, = ji xB
[(v+ ¥ 10) /wnoljo B (69)

that changes sign as B passes from one side of the
null point to the other. Hence, F,, is a stabilizing
force on the side of higher resistivity and a de-
stabilizing force on the side of lower resistivity.
An unstable mode is obtained if the region of
decoupled flow lies on the lower-resistivity side and
has a width ea such that the driving power

v Fy, ~ v2ni(B’)’(ea)/4mnow (70)

just dominates v-F, inside the region. Comparison
of Egs. (65) and (70) yields

a ~ nb/4mw. (71)

From Egs. (66) and (71) we can then obtain a
growth rate that agrees with Eq. (50) and Table I.
We note incidentally that the fluid flow and the
perturbation current density are strongly peaked
in the decoupled region, while the magnetic-field
perturbation falls off over a region in y that is of
order k', In this outer region the fluid and field are
well coupled, and a fluid motion of small magnitude
accompanies the field perturbation.

We turn next to the gravitational interchange
mode, which is quite similar in character to the
“rippling”’ mode. In the presence of a mass-density
gradient, and a y-directed gravitational field, the
fluid motion gives rise to a force

Foo = m& = (—vypt/w)g (72)

which is destabilizing if g points toward decreasing
density. Comparison of v-F,, with Eq. (65) gives

e ~ [plgn/(B"Y'w]'. (73)
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From Eqs. (66) and (73) we then obtain a growth
rate that agrees with Eq. (59) and Table I. The
mode that decouples the fluid and field most effec-
tively in this case is the counter-circulatory mode
shown in Fig. 2(c). In the infinite-conductivity case,
such a fluid motion would lead to local compressions
of B, and so could not proceed unless g is large.
This phenomenon is known as shear stabilization.
In the mode of Fig. 2(c), the opposing flux compon-
ents brought together at the null in B can cancel out,
and so the mode can grow for arbitrarily small g.
As g increases, the region of substantial motion
becomes wider, until conditions for infinite-con-
ductivity instability are reached. We note that if g
points in the stabilizing direction, the possibility
exists of using Fy, to overcome the driving force
F,,, thus stabilizing the “rippling’”’ mode.

The “tearing” mode of Fig. 2(b) differs from the
other two modes in that it is typically a long-wave
rather than a short-wave mode relative to the
dimension of the current layer. The driving force is
due to the structure of the magnetic field outside
the region of decoupled flow; i.e., the tendency of
the sheet current to break up into a set of parallel
pinches. [The nature of this force is readily per-
ceived by applying the “rubber-band’’ argument to
the diagram of Fig. 2(b), but as we are not dealing
with a localized perturbation the argument is not
quite so simple.] Even in the inner region, the flow
is not perfectly decoupled, and a term

E ~ (wB,/k)i (74)
must be taken into account in Ohm'’s law. This term
corresponds to the generation of the perturbation
flux that links the field regions on either side of
B = 0. We have then

nojl = E, + vxB (75)

and we must select ea so that the first term on the
right in Eq. (75) dominates the second in the region
of the partly decoupled flow. Using V-B = 0,
we have

v ~ (BY /Amk)h. (76)

Tor wavelengths that are much greater than the
current-layer thickness a, we find
B’ ~ B,/ea = B,/cka @D

(cf. Eq. 28). If we now choose ea so that noj, ~ E,,
we find

ea ~ no/dmkeo. (78)
The growth rate obtained from Egs. (66) and (78)

87



470

approximates the result of Eq. (57) and Table I.
This analysis is applicable only for ka « 1, since
otherwise Eq. (77) breaks down, B)’/B, becoming
negative. Similarly, if B, must vanish at a finite
distance, Eq. (77) is altered, B!’/B, being diminished
or made negative. The significance of these features
in regard to stability is suggested also by Fig. 2(b):
the closed lines of force cannot drive the instability
by the “rubber-band’’ effect unless they are stretched
out along the B = 0 line, i.e., have small ka; and if
conducting walls were introduced at finite values
of y the lateral crowding of the lines of force would
impede the driving mechanism.

It is of interest to note that the basic driving
force for the “tearing” instability also exists in the
infinite-conductivity equation (20). The displace-
ment ¢ = Y/F (and thus the instability itself) is
precluded in the ordinary theory by the requirement
that ¢ be finite where F = 0.

VII. RELATION TO EXPERIMENT

Owing to the approximations made in Sec. II,
the present results cannot be expected to provide
a general basis for the prediction of instability
phenomena in experimental plasmas. In particular,
the use of the hydromagnetic approximation is not
suitable for high-temperature plasmas, while for
low-temperature plasmas the negelect of Ohmic heat-
ing, ionization effects, etc., becomes unjustifiable.

In spite of these shortcomings in rigor, the present
analysis appears to be consistent with a wide range
of experimental results and therefore permits spec-
ulation about the causes and remedies of observed
instabilities. We discuss in this section a number
of observed instability phenomena that are un-
correlated or inversely correlated with predictions
of the infinite-conductivity hydromagnetic theory,
but that can be accounted for at least qualitatively
in terms of the present analysis. Further corrections
and generalizations (some of which are discussed in
the appendices) may provide a quantitative descrip-
tion of the stability behavior of current layers in
experimental plasmas.

The “Tearing” Mode

Since the “tearing’’ mode is a long-wavelength
instability that involves a considerable disturbance
of the magnetic field of a current layer, it is partic-
ularly suitable for detailed experimental study. We
will consider first the simple sheet pinch, which is
characterized by B., = 0.

In theta pinches where an initial B, field is
entrapped in plasma and compressed by a fast-rising
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B, field of opposite sign,***** a cylindrical current
layer results that is fairly well represented by the
plane-sheet-pinch model of the present analysis.
Typical 7 and 74 values are 1-10 usec and 0.01
psec respectively, so that S is of order 100-1000.
The “tearing’’ mode in this case would consist of
a breakup of the cylindrical current layer into
adjacent rings. The fastest growing wavelength
[cf. Eq. (58)] is given by a ~ 0.2, a value that is not
sensitive to the exact magnitude of S. The cor-
responding growth rate [cf. Eq. (57)] is p ~ 20.
Thus the predicted e-folding time is in the range
0.05-0.5 usec.

In those experiments where the plasma volume is
short in the z direction,?® the current layer is found
to collapse into a single ring, presumably because
there is not adequate room and time for a full
wavelength of the “tearing’’ mode to establish itself.
A more satisfactory test of the theory is expected
for theta pinches that are sufficiently long to
accommodate a number of wavelengths at o ~ 0.2.
Under these conditions, recent experiments at
Aldermaston® have demonstrated plasma breakup
into as many as six rings, with an instability growth
time of about 0.3 usec. Even long reverse-field theta
pinches are found stable under certain conditions,®®
which may be related to the effect of cylindrical
geometry and external conductors (cf. Appendix G).

The gyro-orbits of particles in theta pinches are
not very small compared with the dimension a of
the current layer itself, let alone the dimension
of discontinuity ea of the “tearing’”’ mode. We note,
however (cf. Sec. II, paragraph 1), that the “tearing’’
mode exists not only in the hydromagnetic limit but
also in the collisionless limit, where the Vlasov
equation is used directly.'® It seems likely, therefore,
that allowance for nonhydromagnetic effects is not
crucial in the case of the “tearing’’ mode.

A second experimental embodiment of the simple
sheet pinch is the Triax or tubular dynamic pinch.”
In this case a reverse-B, layer is created. In the
high-density and highly dynamic forms of this pinch
(3 megamperes, 300 pD,) that are usually employed,
the “tearing” mode has not been seen, though an

2 A. C. Kolb, C. B. Dobbie, and H. R. Griem, Phys. Rev.
Letters 3, 5 (1959).

* H. A. B. Bodin, T. S. Green, G. B. F. Niblett, N. J.
Peacock, J. M. P. Quinn, and J. A. Reynolds, Nuclear Fusion
Suppl., Pt. 2, 521 (1962).

2% V. Josephson, M. H. Dazey, and R. Wuerker, Phys. Rev.
Letters 5, 416 (1960).

2 H. A. B. Bodin (private communication, 1962).

27 Q0. A. Anderson, W. A. Baker, J. Ise, Jr., W. B. Kunkel,
R. V. Pyle, and J. M. Stone, in Proceedings of the Second
International Conference on Peaceful Uses of Atomic Energy
(United Nations, Geneva, 1958), Vol. 32, p. 150.
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effort has been made to induce it.*® This study is
currently being extended. In a slower and weaker
pinch (450 kiloamperes), the expected tearing along
(axial) current-flow lines has been observed®™ at
pressures of 30-300x in deuterium and argon, with
wavelengths and growth times that agree well with
the present analysis.

The addition of a B,, field to the simple reverse-B,,
sheet pinch evidently has no effect at all on the
“tearing” mode if k, = 0 (the ‘“‘symmetric’ case,
where F”/ = 0 at F = 0). Thus the “tearing’” mode
may occur in the Triax configuration even in the
presence of an axial magnetic field. Evidence for
such an instability has been found by magnetic
probe measurements.'

In more general current layers, such as those of
the “stabilized” and “inverse stabilized”” pinches,'
we can always choose our coordinates so as to
transform the current layer into the basic model
that is obtained for the Triax plus axial field. If we
wish to look at the ‘‘symmetric ecase” with k, =0,
we orient the z axis of the plane model along B
at the midpoint of the current layer. If the thickness
a of the current layer is small compared with its
radius R, the outer solution of Sec. IV is readily
adapted to cylindrical geometry (sce Appendix I).
In this manner we can show that a “stabilized
pinch” with a sharp current layer is essentially
always unstable against the “tearing’’ mode. A hard-
core pinch with a large vacuum B, field and no null
in the B, field would have an advantage here, since
in this limit & is forced to become large by the
periodicity requirement along the axial coordinate,
the limiting a for which the “tearing’”’ mode can
exist being reached when B,/B, ~ R/a.

A second advantage that is realizable in the hard-
core pinch relates to the use of magnetic fields
produced largely by external conductors. In extend-
ing the present results to nonplanar current layers,
the quantities F’, F” require special interpretation.
From the derivation of Egs. (13) and (14), it is
clear that F’, F” relate to the zero-order current in
the plasma. In the planar case, a zero-order vacuum-
field component has constant B., B,, and thus
cannot contribute to F’, F”’. In the nonplanar case,
where a zero-order vacuum-field component may
have nonzero derivatives of B.,, B.,, the contribution
of the vacuum-field component to F’, F”’ must be
specifically excluded. If the zero-order plasma
current i3 small relative to currents in rigid con-
ductors (e.g., currents in the central core and

28 Q. A. Anderson (ﬁrivate communication, 1960).
29 C. E. Kuivinen, Bull. Am. Phys. Soc. 8, 150 (1963).
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B,-winding of a hard-core pinch), then the F’, F”’
terms in Egs. (13), (14) tend to become small
relative to the F terms. Accordingly, the “rippling”
and “tearing” modes, which depend on the F’
and F” terms respectively, tend to be inhibited.
The behavior of the gravitational interchange mode
is given in Appendix I.

For the “stabilized pinch,” an m = 1 mode
conforming with the magnetic-field direction could
be obtained even in the infinite-conductivity limit,
so that for this configuration a detailed experimental
study would be necessary to establish the occurrence
of the resistive “tearing” mode. For an “inverse
stabilized pinch” with B, ~ B,, an m = 1 mode
conforming with the field has been found experi-
mentally,” contrary to the prediction of the infinite-
conductivity theory, and consistent with the present
analysis. For 74 ~ 20 usec, ra ~ 0.2 usec, the
e-folding time of the ‘“tearing” mode [cf. Egs. (57),
(58)] is about 2 usec.

A striking feature of magnetic-probe traces taken
on the “stabilized’’”*® and “inverse stabilized’’? pinch
discharges is that magnetic turbulence is suppressed
during the initial dynamic phase. The present
analysis provides a possible explanation. In Sec. V
we note that a sufficiently strong gravitational effect
(1.e., an accelerational effect in the present case) will
suppress the “tearing’’ mode in favor of the gravita-
tional interchange mode. Especially in the presence
of an oscillating gravitational field, only short-wave
gravitational interchange modes tend to grow, with a
resultant minimal disturbance of the magnetic field.

The Interchange Modes

In the limit of high S and small @, the “rippling”
and gravitational modes grow preferentially at short
wavelengths and with k-B = 0, so that there is a
minimal disturbance of the magnetic field. The main
effects to be looked for experimentally are a fluc-
tuating electric field transverse to B and a loss of
hot plasma out of the current layer. The “rippling”
mode interchanges high-conductivity against low-
conductivity plasma, and the gravitational mode
interchanges high-pressure against low-pressure
plasma or permits decelerating plasma to pass across
magnetic field.

Recent studies on Zeta®' have shown that the
dominant nonradiative energy loss takes place by
"% L C. Burkhardt and R. H. Lovberg, in Proceedings of
the Second International Conference on Peaceful Uses of Atomic
Energy (United Nations, Geneva, 1958), Vol. 32, p. 29.

#'W. M. Burton, E. P. Butt, H. C. Cole, A. Gibson, D. W.
Mason, R. S. Pease, K. Whitman, and R. Wilson, IAEA

Conference on Plasma Physics and Controlled Nuclear Fusion
Research, Salzburg, Austria, (1961), paper 60.
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convection of hot plasma across magnetic field to the
tube wall. The plasma convection is accompanied
by fluctuating transverse electric fields with fre-
quencies in the 10-100 ke range. The wavelengths
are of order 20 cm in the direction across magnetic
field, and are much greater in the direction along
magnetic field. The parameters 7z and 7y are
typically 3000 wsec and 1 wsec. For the “rippling”
mode, we thus obtain p ~ 100 (cf. Eq. (50)).
The resultant e-folding time of 30 usec is perhaps
somewhat too long to fit the data. The 8 value is
of order 0.1, so that the G term and the (4)* term
in Eq. (39) are of the same magnitude. The coopera-
tion of the two driving mechanisms leads to a
slightly enhanced growth rate. The stabilizing effect
of heat conductivity on the “rippling” mode in Zeta
(cf. Appendix F) begins to play an important role at
electron temperatures above 10 eV.

The main difficulty in accounting for the Zeta
results lies in the extremely short dimension of the
region of discontinuity (ea ~ 1 cm) that is called
for by the present analysis. The ion gyroradii in
Zeta tend to be of this size or even larger. A non-
hydromagnetic treatment of the region of dis-
continuity is therefore necessary to provide a
rigorously valid model.

The attribution of the plasma loss in Zeta primarily
to the “rippling”’ mode would have one especially
engaging feature that deserves mention. Contrary to
expectation from the ordinary theory of the inter-
change mode, the plasma in Zeta is most stable when
the field lines in the central region of null shear
come back on themselves on going once around the
major circumference of the torus.** At these “magic
number”’ points—the higher harmonics of the
Kruskal limit—the periodicity condition around the
major circumference permits an interchange mode
to align itself perfectly with the null-shear magnetic
field in the central region, which is advantageous
for the growth of gravitational modes. We note,
however, from Eq. (31) that the “rippling” mode
is not perfectly aligned with the local magnetic field,
but rather with the magnetic field at a point that is
slightly displaced from the point of interchange.
To generate the basic motor force of the instability,
the perturbed current channel must make a small
angle with respect to the field in the hot plasma.
Thus the “magic number” regimes are generally
unfavorable to the growth of the “rippling” mode.

A number of authors™ """ have pointed out that
the “rippling” mode is well suited to account for

u E. P. Butt, Bull. Am. Phys. Soc. 7, 148 (1962).
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the pump-out® phenomenon in discharge tubes of
the stellarator type. Using the present results for the
growth rate [cf. Eq. (50)] and assuming typical
parameters rg = 100 usec g = 0.01 usec, we obtain
p ~ 100. Due to the heat-conductivity effect
(cf. Appendix F) the expected growth times of
~1 usec become longer at electron temperatures
above 10 eV. Again we note that the dimension ea
of the discontinuity has an unrealistically small
value: less than a millimeter. A nonhydromagnetic
treatment is needed to give the true growth rate.

The “rippling” mode is not an inherent threat to
the stellarator plasma-confinement scheme, since the
discharge current can always be replaced, at least
conceptually, by other heating methods. But even
in the absence of current, the stellarator generally
has some tendency toward gravitational inter-
changes, which is supposed to be suppressed by the
shear of the magnetic field. For typical parameters
of present experiments, the G term in Eq. (39) is
much smaller than the »'* term but once the heating
current is removed the pressure-driven resistive
mode may become the dominant source of difficulty.
The same remark applies to the stellaratorlike
“Levitron”" (toroidal hard-core pinch). Hopefully,
the nonhydromagnetic effects will serve to suppress
the interchange mode in the limit of high con-
ductivity. In particular, in reference 34 it is shown
that, for a certain class of perturbations, a stabilizing
charge-separation occurs due to finite Larmor radius.
This leads to stability if ws/w, < (kR.)® where
w, is the cylotron frequency, and wy is the growth
rate without correction for finite-Larmor-radius R..
Since wy tends to be small for resistive instabilities,
one might expect a strong stabilizing effect.

While the gravitational and resistivity-gradient
effects are usually such as to collaborate in promoting
instability in pinch and stellarator-type devices, the
possibility exists of designing special regimes where
the two effects are balanced against each other.
For example, a stellarator discharge might be
stabilized against the “rippling” mode if the absolute
magnetic field strength were made to increase
everywhere with radius. Such an effect can be
achieved by giving the stabilizing windings an
appropriate pitch. The required magnitude of
stabilizing field is indicated by Eq. (60).

Direct observation of interchange modes has been

# E. P. Goburnov, G. G. Dolgov-Savelev, K. B. Kartashev,
V. 8. Nukhovatov, V. S. Strelkov, and N. A. Yavlinski,
TAEA Conference on Plasma Physics and Controlled Nuclear
Fusion Research, Salzburg, Austria, (1961), paper 223.

# M. N. Rosenbluth, N. A. Krall, and N. Rostoker,
Nuclear Fusion Suppl., Pt. 1, 143 (1962).
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possible in a linear “stabilized pinch” experiment.*
Stereoscopic Kerr-cell photography through a screen
electrode reveals luminous “streamers” that have
various orientations during the dynamic and
quasistatic phases of the pinch cycle. During the
dynamic phase, the streamers are aligned with the
magnetic field in the regions of highest g stress
(i.e., nearly pure B, field and nearly pure B,) field.
During the quasistatic phase, helical streamers are
seen, which are more nearly aligned with the mean
magnetic field in the current layer, and which can
be accounted for as a mixture of the “rippling” and
“tearing” modes.

VIII. COMPUTATIONAL PROGRAM

To supplement the analytical treatment in the
range of intermediate S and to obtain accurate
results in general for specific choices of F and of
the boundary conditions, an IBM 709 code is
available. This code is based on Egs. (2)-(6) in
linearized form and makes use of Fourier analysis
in space but not in time. Accordingly, the develop-
ment of specific initial disturbances can be studied.
The code is applicable to both unstable and over-
stable modes, and will be capable of incorporating
Ohmic heating, ionization, and similar effects.

Preliminary results have been reported,® and a
more exhaustive study is under way.
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APPENDIX A. EFFECT OF FLUID
COMPRESSIBILITY

Allowance for fluid compressibility has two
principal effects on the stability analysis. The
equation of motion of the fluid is altered, and the

# D. J. Albares and C. L. Oxley, Bull. Am. Phys. Soc. 7,
147 (1962).
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first-order quantities #, and (gp), receive noncon-
vective contributions.

We begin by demonstrating that the dynamic
effect of compressibility is generally negligible for
the modes of Sec. V. The equation V-v, = 0 is no
longer valid now, and we replace W’ by W’ +
targV -v, in Eq. (14) [Equation (13) is unaltered).
The extra term arises from the fact that V-v, = 0
when one eliminates (k-v,) from the equations of
motion.

To find V-v,, we use the equation describing
the pressure perturbation

wP, + v,-VPy + yP,V-v, = [(y — 1)/(4n)’]
- [1:(V xBy)® + 29V xB,)+(V xB))]. A1)

The effect of Ohmic heating has been included. Heat
losses due to conduction and radiation have been
neglected.

To determine the first-order pressure contribution
P,, we use the equation of motion in the form

k'{PDwvl + VP1 - (4"")—‘[(va0) XBI

+ (V xB,) xB,] — (og).} =0 (A.2)
which reduces to
BiBy | BudBi _ e, _
P, + ym +1'41rkdy zkv,—O, (A.3)

where
B, = §-(t xBy)/k = BH,
B, = §-(kxB)/k = (B/ia) x,
By, = k-By/k = BF,
By, = k-B,/k = (iB/a)y’
v = k-v,/k = —(1/karg)( W' + iaryV-v)).

We will show below that in the “region of dis-
continuity” of Sec. V, which is the region of critical
interest, the B,, and v, terms are negligible. One
finds also lBJ_oBJ_]' > IBIOBIII~

Equation (A.3) then yields

P, = _BJ.OBJ.I/4T = _Bo‘B1/4T (A-4)

as would be expected for a subsonic motion: the
total (fluid plus magnetic) pressure remains approxi-
mately constant.

To evaluate the B,,B,, term in Eq. (A.3),
and to prove its predominance, we must find the
perturbation-field amplitude x. In the analysis of
the incompressible case, it was unnecessary to
obtain x explicitly in order to find the dispersion
relation. The solution was obtained in terms of ¥

91



474

and W, and the quantity x could then be derived,
if desired, by means of Egs. (8) and (9). Since we
will show that compressibility has a negligible effect,
we may proceed in precisely the same manner, first
obtaining x for the incompressible case, and then
using the result in Egs. (A.3) and (A.1) to verify
the effect of compressibility. The terms involving
V-v = 0 may be easily checked subsequently
to be small.
From Egs. (8) and (9) we obtain

(@) = xl’7 + p + @S/p)F] — WH’
- (I/PIW7H") — @ Wi'H)
+ (*S*/p)FH'Y, A5

an equation that is similar in structure to Egs. (13)
and (14). In the “outer region” of Sec. IV, we have

xF = —H'Y (A.6)

which may be used with Egs. (19), (A.3), and (A.1)
to demonstrate strictly incompressible flow, as might
be expected. In the region of discontinuity, the terms
of Eq. (A.5) involving 7' are of order p*S~! relative
to the ¢ term, and may be neglected. Similarly, the
term WH’ is of order p!S™' relative to the ¥ term
and may be neglected except in the case G ~ 1,
in which case the two terms are comparable. Trans-
forming to the variable 8, = (u — uo)/¢, and making
the usual approximations in the region of dis-
continuity (cf. Sec. V), we obtain

d'x/d6; — Y6ix = (H'/4eF")¥0,. A7)
Thus x behaves much like W. From Eq. (A.7)
we infer

x = O[(H'/eF")¥]

in the region of discontinuity.

We may now return to evaluate the magnitude
of terms in Eq. (A.3). From Eq. (A.8), we see
directly that the B,, term is negligible. From Eqgs.
(A.8) and (35), it follows that the v, term is of order
p/*87} and is therefore negligible. We have now
proved Eq. (A.4). Using Egs (A.4), (A.8), and the
zero-order relation P) &~ — B’HH'/Ax, we may write

P, = i0(yPy/acF’). (A.9)

We may now estimate the magnitude of the terms
of Eq. (A.1) in the region of discontinuity. The 7,
term is negligible relative to the VP, term, since

m(V xBy)* = O(v,-VPo/p)
where we have used Eq. (11). For the 5, term we find
7(V xBy)-(V xB,) = O@wP:/pe)

(A.8)
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so that it is of the same magnitude as the P, term for
the “rippling” mode [cf. Eq. (53)], but is negligible
for the low-a “tearing’”’ mode [cf. Egs. (36) and (56)]
and the gravitational interchange mode. Next we
compare the P, and VP, terms. From Eq. (A.9)
we have

wP, = 10(pyP{/eaF' 1) (A.10)
and we see directly that
v,- VP, = {O(WP}/arg). (A.11)

Using Eq. (35) and remembering that U = 0(y),
we conclude that the P, and VP, terms are of the
same order.

Finally we may evaluate the correction to W’ in
Eq. (14) that results from compressibility. As we
have noted in connection with Eq. (A.6), this correc-
tion is insignificant in the outer region. In the region
of discontinuity, we have from Eq. (A.1), and from
the remarks on the relative magnitude of its terms

[V -vi| = O[(Ps/vPo)W]
= O(ePs/YPW']
L |w'|. (A.12)
Thus, allowance for fluid compressibility does not
directly affect the fluid motion involved in the modes
of Sec. V.

The ‘“tearing” mode is thus completely unaffected.
For the “rippling”’ and gravitational interchange
modes, which depend on the nature of Egs. (11)
and (12), there will generally be indirect compres-
sional effects, since we see from Eq. (A.12) that the
compressional changes in p and 5 are comparable to

the purely convective changes. Accordingly, we write
the equations

wpy + V.-V = —pV-vy,

wng + V- Vo = v — Dno
-[v.v. _ n(V xBy)* 4 20(V xBy)- (¥ xB,)]’
(A.19)

(47")2P [
where we have used the plasma properties n~ T~}
and pT ~ P.

We begin with the standard gravitational-inter-
change case, i.e., 7' = F” = 0, and |G/(F')’| < 1.
From Eq. (A.1) (neglecting the Ohmic-heating
terms) and Egs. (A.4) and (A.13), we obtain as the
modified version of Eq. (33)

@U/de¢ + U(AQ — L) — 36}
= 0 — (4eF"AL/H")x

(A.13)

(A.15)
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where
L, = poP3/vpsPo.

Equations (32), (A.7), and (A.15) can readily be
solved by the method of Sec. V, and yield the
eigenvalue equation

727 Q

1.1,

[rig —3aa - L)} r(%)]l
[F=fas= Dy~ LTyl A9
We note that A is not much altered for L, < 1;
in the case L, > 1, however, we now find unstable
modes for both positive and negative G. (As will
emerge in Appendix I, the dependence on compress-
ibility is a peculiarity of the ‘“‘true” gravitational
mode, which disappears when G is to be interpreted
as arising from a pressure gradient and curved field.)

For the “rippling”’ mode we proceed in a similar
manner, now setting @ = 0 and including Ohmic-
heating effects. We obtain

A

LU+ uia - LY - 16} = wo. - &)
_ 4eF'AL, (v — DH' dx .
H' X 377 _Yﬂoepz d0° (oc 5!0) (A'l7)
where
Bo = 4nPo/B’,
1

[#-#o-l—;—p(l-lu)],

>
o
1

€

L
e T L n),

S U A
51« - 89 n (l Lr))
[ = 30 = DmPs
' 2ynoPs

The equations for the “rippling” mode are more
difficult to solve formally, because the homogeneous
part of Eq. (A.17) involves 6., while that of Eq.
(A.7) involves 8,. The main features of the result
are evident, however. Since ¢ ~ 1/p for the “rippl-
ing”’ mode, we see that the x and dx/dé terms in
Eq. (A.17) are of the same order in S and « as the
¢ term. For « >> 1, we know from Sec. V that the
U term becomes of order « relative to the ¢ term,
because (n + & — A) — 1/a in Eq. (43). Thus, for
the case of maximum interest, where S and a are
large, we have simply

A=m+ /0 -L), m=1,2,3---.(A.18
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Since generally Py, < 0, we will have L, > 0,
so that the growth-rate is reduced. For L, > 1,
the pressure-gradient effect dominates the resis-
tivity-gradient effect in Eq. (A.14), and we obtain
a new “rippling”’ mode that resembles the old one
in every respect, except that 5}/, is to be replaced
by 3{(x — 1)/v|P;/P,. Note that, in the case of
maximum interest considered here, the Ohmic-
heating effects do not play a role.

The analysis in this appendix has been carried out
for H, H = 0 at F = 0. If either H or H' has a
null at F = 0, then it is easy to see that the com-
pressibility effects become completely negligible as
S — . If H' has a null, the Ohmic-heating effects
become completely negligible as S — . (These
remarks, of course, cover the important special case
of unsheared field, where H = 0.)

APPENDIX B. LOW-CONDUCTIVITY LIMIT

For S « 1, unstable modes cannot grow faster
than ordinary resistive diffusion. In order that a
zero-order equilibrium may exist, we therefore
require that Eq. (15) be satisfied. For convenience
we let 7F’ = 1. We will treat the case G = 0.

To make a general estimate of p, we note from
Eq. (18) that W? must be of order S** or less.
If we had p > S, Eq. (13) would reduce to

V= @ PP =0

from which follows

(B.1)

f." dp (W) + @ +pF W] =0 (B2

so that p < 0. Unstable modes are therefore char-
acterized by p < 0(S), which means that they grow
on the hydromagnetic rather than on the resistive
time scale.

The case S < 1 may be applied to liquid-metal
experiments and to some experiments with dense,
low-temperature plasmas of heavy ions. The former
application has been investigated exhaustively by
Murty,” who includes surface-tension and gravita-
tional forces, and uses the slab model

Fr=1, l<1; F =0 [>1,

together with the specification 5 = F’.
We will begin with a more general treatment.
As S — 0, p — 0, Egs. (13) and (16) reduce to

Y~ oty +oF’ =0, (B.4)
(B — o + @S /P)F'OF + ¥) =0, (B.5)

where W = pv. There are two characteristic cases:
o’ > |F"/F|, for which the ¢ term in Eq. (B.5) is

(B.3)
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negligible; and o® <& |F'/F|na, which includes
Murty’s model.

For o > |F"/F|, we will set 5 = 1, and Eq.
(B.5) then becomes

v + o[—1 + (S/p)FF"] = 0.  (B.6)

We note that short-wave perturbations are now
localized near the point u,, where (FF"')’ = 0 rather
than near F = 0; and we expand

FF'" = f, + le-l;

where u; = p — u.. Equation (B.6) then has the
same form as Eq. (41). The fastest growing mode is
given by

v = exp [~ }a(—fa/fo) 2]

and the corresponding eigenvalue relation is

p = Sf. (B.7)

The condition for instability is fo > 0 > f.. To
illustrate what this condition means, let us consider
the model

F = F, + tanh g,
where F, is an arbitrary constant. Then we have
FF’" = —2(tanh p/cosh’ u)(F, + tanh u).

For F, = 0, we find FF"' < 0; therefore there are
no modes of the symmetric ‘“tearing” type. For
F: &1, wefind p, = —3F,, fo = 3FL, f, = —2.
For F2 > 1, we find u, = Fsinh™'(27}), with the
sign of u, to be taken opposite to that of F, for
instability, in which case fo = 2 |Fo| 37}, f, =
8 |F,| 37} Thus the “rippling” mode exists for
F, 5 0, and grows most rapidly for F >> 1.

We turn now to the second characteristic case,
& & |F"/F|max. The model of Eq. (B.3) is typical
of this case, and will be adopted here. For simplicity,
we will specify 5 = 1 everywhere. This density
profile is somewhat more suitable for the plasma
application than Murty’s, and is well suited to
describe liquid-metal layers suspended in a density-
matching 0il.** Except at the two points where
F' 5 0, the solution to Egs. (B.4) and (B.5) have
the form ¢, v ~ ¢"** so that the problem is a
purely algebraic one. To obtain the dispersion
relation, it is convenient to write Eq. (B.3) in the
form

F'=—%(u—1)+du+1
F=F =F,—1, p< =1

# S, A. Colgate, H. P. Furth, and F. O. Halliday, Revs.
Mod. Phys. 32 744 (1960).
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F=Fo+u,
F=F2=Fo+l,

The resultant equations involve y,, ¥, », and v,,
where the subscripts refer to values of ¥ and v at
p = —1 and +1 respectively. Eliminating ¢,, ¥,
one obtains the two-dimensional homogeneous vector
equation

wl <15
u> 1.

0:[2p°/aS® = (1/20)(1 — ™) + F,]
—vFe? =0, (B8
n[2p" /a8 — (1/2a)(1 — €*°) — F\]
+ vFe?* =0, (B.9)
so that
P/S =11 — ")
— dofl = [1 4+ (Ff — D1 — 9]}, (B.10)
The eigenmodes are described by
v = (Fo — 1) (B.11)

B

The typical “tearing” mode is found for F, = 0,
where Eq. (B.11) yields v, = =v,, and may be
identified with the antisymmetric-v eigenmode. The
typical “rippling” mode is found for F; >> 1, so that
v, = 0,¢"°[L F (1 — ¢ *)Y™!, and may be identi-
fied with the eigenmode involving the positive square
root, when F, > 0.

For a < 1, the eigenvalues are

F., FL4+F—-0A -

/8 =0, aq, (B.12)
and the eigenmodes are characterized by
n/v, =1, (Fo — 1)/(Fo + 1). (B.13)

The first of these modes, describing a simple dis-
placement of the current layer, is the low-a limit
of the “rippling” mode; the second covers the
“tearing” mode.

For a >> 1, we have

P/8 =%

In the special case F, = 0, Eq. (B.14) gives a
single solution

— 3ol £ Fy). (B.14)

/8 =%~ }a (B.15)
so that both the antisymmetric-v “tearing” mode
and the symmetric-v mode are stable. Equation
(B.14) indicates that instability can be obtained
only for F; > 1, and that the growth rate increases
with F;. For F3 — «, we have
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Pz/sz = :F%ath

v/v, = 2€“: %e_h .

(B.16)
(B.17)

For positive F,, the second of these eigenmodes is
unstable and corresponds to the “rippling” mode.

The results we have obtained for the o <«
|F"/F|aax case are substantially similar to those
of Murty.® We note that, for the “tearing” mode,
p has a maximum of order S. For the “rippling”
mode, Eq. (B.16) indicates that p is of order o!S,
in contrast with Eq. (B.7), where p is found to be
of order S. Thus the increase in growth rate at
short wavelengths predicted by Eq. (B.16) is seen
to be dependent on the discontinuities of F’ assumed
in the zero-order configuration. The long-wave
“tearing”’ mode is not dependent on the exact
structure of F, and similar growth rates would be
expected for continuous-F’ models.

APPENDIX C. THE LIMIT ea%? > 1

We consider here the case where the instability
wavelength is smaller than the region of discon-
tinuity. This limit is more of mathematical than
of physical interest, since ordinary resistive diffusion
proceeds more rapidly at such small wavelengths
than does the instability. For a’¢ > 1, it is con-
venient to write Eq. (32) in the form

- r° —cal0-0,
=—2;f_wdole =01 (6, + 8)

T~ «T’Q U + 8, (C.1)
valid if Q/e® < 1. Thus we see that ¢ is no longer
constant in the region of discontinuity, but varies
as strongly as U.

The ¢ term in Eq. (33) becomes negligible, and
the eigenvalues A lie very close to %, 3, % --- .

For the “rippling” mode we now have from Eq.
(39), when o’¢ > 1,

p = (87 |F'|/27*5)". (C.2)
For the gravitational interchange mode, we may

drop the restriction Eq. (45) on the magnitude of G,
and obtain from Eq. (39), when o’ > A,

p = SGY/p. ()]
Using Egs. (C.2) and (C.3), we may verify the
validity of the initial assumption that 2/’ < 1
if o’ > 1.
APPENDIX D. LOW-« LIMIT FOR THE
MODE

Neglecting terms of order o’ in Egs (13) and (14),
we will analyze the “tearing”’ mode without invoking

“TEARING"

FurtH, KILLEEN, AND ROSENBLUTH

477

the constant-y approximation which was used in
Sec. V, and which is inapplicable for « — 0. We will
neglect G and #’, and restrict .urselves to the
symmetric ‘“‘tearing” mode, where F” = 0at F = 0.

In the region of discontinuity, we will set 7 =
# = F' = 1 for convenience, so that F = u. Egs. (13)
and (14) then yield

2" =pe' + (S /p)(u% + 42) (D.1)
where
z=y" =py + WFu. (D.2)
Introducing a new independent variable
8, = u(e’S*/p)t
and defining
N = pl/as8
we obtain
d’z/d8; = (A + 6)) dz/d6, + 46,2z, (D.3)

to be solved subject to the boundary conditions

z = 1,} 8,
2 =0,

z=0,

I

o,

6, = w.

We observe that there are two well-behaved
solutions at 6, = o, namely z ~ 6{* and z ~
exp (—16}), so that Eq. (D.2) can always be solved.
The relationship between the solution z and the
quantity A’ of Eq. (21) is given by

1 ( v

A’ = 2 lim ‘—,>
fime \Y — pyp
where the denominator represents the intersection

of the asymptote of ¢ with the ¥ axis at p = 0.
Using Eq. (D.2), we have

A= 2pj:zdp/(1 —pf:uzd,,)- (D.5)

If we let A’ = 2/a (cf. Eq. 28) and define p, =
S7¥p, o, = S'a, we obtain from Eq. (D.5) the
eigenvalue relation

P:“H(Pl/al) =1

(D.4)

(D.6)

where

HO) = A+ j:zdol/<l N f: bz do,) (D.7)

with the integrals to be determined by means of the
solution of Eq. (D.3). We note that near A = 0,
H =~ 27} 5o that p, = of™%, or p = (S/)”®, the

95



478 H. P. FURTH, J. KILLEEN, AND M. N. ROSENBLUTH
oe W /e = W[l — §G/p" + (F')ulS" /p]
| + ¢S Fu,  (E2)
os}
where we have set 7 = 5 = 1.
o8 r We make the Fourier transform
ps-i72 04+ ©
o3t ¥ = f dk, ‘l’;e“"“;
02 ©
o W= [ dko W,
%%, o 20 30 0 and obtain
o K P’ dW
F1G. 3. Growth rates for long wavelength “tearing”’ mode. '/h(ct_g + 1+ %) + pe —dT. =0, (E.3)
0
result obtained in Sec. V. It is also easy to verify by y (/ﬁ; 41— S_’g) _FYS W,
substitution that for \ = 1, we have z = exp (—36}) \o? p p dk
and HA\) = «. Thus p, is zero both for A = 0 and e dy
X = 1, and has a maximum value of order unity + iF'S dT,: =0. (B4
somewhere in between. This result verifies the L
conjecture made in Sec. V that the maximum of p Eliminating ¢, we have
with respect to a is of order S!. Eq. (D.4) has been (F)S d B4+ dW,
integrated numerically on the UCSD-CDC 1604. p  dke (kf, +o +p dko)
The solution was used to construct Fig. 3, which X ,
describes the detailed behavior of p in the long _ W,(&; +1 - ig) =0. (E5)
o P .

wavelength limit.

APPENDIX E. GENERAL ANALYSIS OF
GRAVITATIONAL INSTABILITIES

Basic Equations

In Sec. V we have treated the gravitational
interchange instability for the case where G(F")™* is
sufficiently small so that y is constant in a region R,
of width ¢ ~ (1 + |[A’])™" about the point u,,
where F = 0. The object of this appendix is to
derive conditions on G(F’)~* for which the constant-y
approximation is justified, and to extend the analysis
to the case of stronger gravitational fields.

As in Eqgs. (32) and (33), we will treat a region
about the point u, in which F’, 3, G, and j are
constant, while ¥ is approximated by F'u,, where
w1 = u — po. For simplicity we will treat the pure
gravitational-instability case where F”, 7' = 0,
so that the “tearing” and “rippling” modes are
absent.

The analysis is valid in the range u} < 1. Thus it
applies to high-G modes of short wavelength, i.e.,
a > 1, and it also permits us to assess the constancy
of Y near p, for low-G modes of arbitrary wavelength.
High-G modes of long wavelength are not covered,
but these are of lesser practical interest.

Egs. (13) and (14) now reduce to the form

y/e’ = Yl + p/e’) + (W/e)F', (B.1)
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In our usual limit S— o, where p >> 1, o, we may
reduce Eq. (E.5) to standard form

d {kf + o adW,
di, \1 + &% dk,

}-— (Ak} — D)W, =0, (E.6)

where
ko = pk,, o =d/p K1,
A = p*/(F) S, D = G/(F')’ — Ao.
We will confine ourselves to the case @ > 0. Since
o < 1, we may split the analysis of Eq. (E.5) into

two overlapping ranges: k¥ < 1 and k* > o.
For k! < 1, welet k, = o™ %, = a~'k,, and obtain

d dw,
ka; [(l + k3) d_kz:l — (Ack; — D)W, = 0. E.7)

Low-G Case

At this point we turn specifically to consideration
of the case where G(F')™ < 1. As we will see,
the approximation Ae << 1 is appropriate to this case.
Eq. (E.7) then reduces to the Legendre equation.
The general solution is

W‘ = Can(’ikz) + Czph(_'ikz) (ES)
where

h=4-14+1 - 4D} <o. (E.9)
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‘We note that the region k, < 1 is related to the
“outer” region of Sec. IV, and that the choice of C,
and C, will reflect the outside boundary conditions,
e.g., for a symmetric layer we would have C, = —C,.
For large k, the asymptotic form of the Legendre
function gives

W, = Lkt + Lk;**? (E.10)

where the constants L, ., are determined from the C’s.
For D < i, W, decays at large k, (with the first
term predominating), while for D > %, W, is
oscillatory. Since the oscillatory behavior is not
acceptable, it follows that the A¢ << 1 approximation
is consistent only with the case D < %, [i.e., the case
G(F)™* < 1.

Continuing with the analysis of the D < } case,
we proceed to solve Eq. (E.6) in the range k! > o,
using W, =~ k' to give the behavior of W, for
o < k! < 1. The appropriate form of Eq. (E.6) is

d_zl{l -Ili?kf%?c%} — (A} — DWW, =0 (E.11)
and a solution is
W, = ke (E.12)
with eigenvalue
A =N, (E.13)

clearly the lowest eigenvalue. Hence, for the case
G(F')™* < 1 we have

p = (sar{lo i@

In the low-G limit, Eq. (E.14) reduces to Eq. (59)
for A = }, thus verifying our use of the constant-y
approximation. However, this verification of the
results of Sec. V is limited to the case a >> 1, since
only in this limit is the instability localized, so that
we may neglect F”/, set F = F'y, etc.

For @ < 1, ¥ increases away from p, [cf. Eq. (26)],
and the G-term in Eq. (20) may become important.
In particular, if G is constant, we must require

G/(F..) Lo (E.15)

in grder to be able to neglect the contribution of the
G-term at large u.

(E.14)

High-G Case
To study the case G(F')™* > 1}, i.e., where the
Suydam criterion is violated, we return to the range
k? < 1 and to Eq. (E.7) with Ao finite. We note
that the finiteness of Ao implies p ~ S, as we would
expect for an instability that exists in the infinite-
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Fia. 4. Plot of eigenvalues of Eq. (E.16) for growth rates of
hydromagnetically unstable gravitational mode.

conductivity limit. Equation (E.16) has been
integrated numerically, and the results are given in
Fig. 4. The main features of the solution may be
deduced analytically.

For G(F")™® > 1 the complete solution W, is
obtained within the range k¥ < 1. (The range k! > ¢
corresponds to the ‘“‘region of discontinuity’’ of
Section V, and disappears for infinite-conductivity
modes.) Thus we have the boundary condition that
the solution of Eq. (E.7) should vanish at =+ . If we
define k, = sinh 2z, then Eq. (E.7) can be reduced
to the form

dW./de + (D - D
— lsech’z — Agsinh® z]W, = 0. (E.16)
For small Ao, the resulting “potential well” is
almost a square well, and we derive the eigenvalue
Ao~ (4D — 1) exp [~2¢/(D — DY.  (E.17)

Thus, for small D — }, As is extremely small.
The growth rate p does not effectively become of
order 8 until D ~ 1.

For large Ao, Eq. (16) reduces to the harmonic
oscillator equation, and we have the eigenvalue

Ae =1+ (D - P (E.18)
For G(F")™* > 1, this may be written
p'/8 = G — (F)G/F') — 3. (B.19)

Note that, since we have assumed |u,] < 1 in
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deriving Eqgs. (E.1) and (E.2), the discussion of the
high-G case is valid only for @ > 1. Plasma com-
pressibility, which has been neglected throughout,
presumably also affects the high-G case.

APPENDIX F. EFFECT OF THERMAL
CONDUCTIVITY

From Eq. (5a) we obtain to first order
wn + V-V = + (26/3n,B7)
*[Bo- V(B V1) + By V (B, Vo)
so that approximately (setting B: = B?),
mp + KF'a®) + (i/a)ni(W — KFo'y) = 0,
K = 2«rp/3na’ = 8xx/3n(n),
~ (10"/n)T*,

where 7' is in eV.

Note that outside the small skin depth of thick-
ness ¢, around the point where F vanishes, Eq. (19)
tells us that y = —WF/p, so that the correction
terms cancel in Eq. (F.2). This is reasonable since
in the outside region material is moving with the field
lines, and the condition B- V7T = 0 is maintained.

If we were to use Eq. (I".2) in the calculations
of Sec. V, only the terms proportional to 7" would
be affected. In the limit K — « we could simply set
7 = 0in Eq. (39). This would not alter the results
for the gravitational and “tearing” modes. For our
previous results on the “rippling”’ mode to be valid,
we should require

(F.1)

(F2)
(F.3)

KF?éd/p < 1 (F.4)

where we have set F = F’¢, its value at the edge
of the region of the discontinuity. Using Eqs. (34)
and (50) and putting 7, F’, 7, 5 = 1 we obtain as a
condition of validity

K(@"°/8%% < 1. (F.5

Since K ~ T", 8 ~ T?, the correction term evidently
becomes dominant as T — o. In cases of practical
interest,’"*' the critical value of T is of order 10 eV.
At higher temperatures a mode of the “rippling”
type still exists, but its growth rate depends on K
and is greatly diminished relative to that of the
ordinary “rippling” mode.

We have assumed here that the classical values
of » and x may be used. In experimental situations
where 7 is enhanced by cooperative phenomena, the
magnitude of K may differ from the estimate given
in Eq. (IF.3).
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APPENDIX G. STABILIZATION BY CONDUCTING
WALLS

Whether the end-points u,, u, are located at finite
or infinite p is important only for low-a modes, in
particular for the “tearing” mode. In this appendix
we derive a marginal stability condition for the
“tearing’’ mode in the presence of conducting walls
located at u,, ..

From Eq. (49), we have that the marginal stability
condition is characterized by A’ = 0. From Egs. (20)
and (21) we see then that the stability condition is
equivalent to the requirement that o > o, where
ol is the eigenvalue of the equation

V' — Y+ F'/F) =0 (G.1)

with ¥ = 0 at u,, u,. As ||, |u:| become smaller,
we have o — 0, and the current layer is then
completely stable against the “tearing’’ mode.

We begin by considering the simple model F =
tanh g, for which e, = 1 when p,, y, = F = (cf. Eq.
28). Equation (G.1) then becomes

¥ — Yal ~ 2/cosh’ p) = 0. (G.2)

The solutions of this equation have been discussed
in reference 18. For u, = —u,, one finds a. = 0,
0.50, 0.95 when p, = 1.20, 1.36, 2.20. For u, < 1.20,
absolute stability is achieved.

TFor the general symmetric layer we restrict
ourselves to writing down the value of u. which
completely stabilizes the tearing mode. In this case
a. = 0 and Eq. (G.1) is trivially soluble to give

My FII 1
Pt G =
The generalization to cylindrical geometry is dis-
cussed in Appendix I.

(G.3)

APPENDIX H. EFFECT OF FINITE VISCOSITY

We will consider the case of isotropic fluid vis-
cosity, simply adding a term pvV?v to the inertial
term p dv/dt in the equation of motion [Eq. (4)).
This treatment indicates the general character and
magnitude of viscous effects, but gives only a first
approximation to the case of a hot plasma, which is
well known to have an extremely complicated
viscosity tensor. We will defer consideration of the
full viscosity tensor and the Hall-effect terms in
Ohm’s law (which correspond to finite-Larmor-radius
effects) to a later paper, where the present in-
stabilities are approached from the point of view
of the full set of plasma equations.

The most appropriate value of » for the isotropic-
viscosity analysis is probably that corresponding
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to motion transverse to magnetic-field lines. In the
case of the modes of Sec. V, this motion exhibits
extremely steep transverse velocity gradients in the
region of discontinuity near F = 0. For the purpose
of estimating the order of magnitude of » in a
plasma, we note then that

vy /(1 + witd),

where v;, w;, and 7; are respectively the ion thermal
velocity, gyrofrequency, and collision time. We are
usually interested in the case of singly charged ions
and w;7; > 1. For comparison purposes, the
resistivity may be written

n R mc’/ne’r,
so that

v o BiTem
~ ,
n  4r v.m,

(H.1)

where B; is the ratio of the ion thermal pressure to
the magnetic pressure, and m;, m, refer to the ion
and electron masses. For a fully ionized plasma,
we have r./r, & (m./m)YT,/T;)}. In what follows,
we will use the expression gv = [(5)/4rlg, where
q is generally slightly larger than unity, except for
very-low-g or low-(T./T;) plasmas, when it is small,
or for |B,| very small, in which case ¢ may become
very large.

Using the modified form of Eq. (4), we now obtain
instead of Eq. (14)
~N__‘l vy — 2 ~_SZG F_Sz
114 » w aW [p P + »
(F i)] : z(z _ F_)

(5 +55)] + s -5

We have retained only the highest derivatives
of W in the inertial and viscous terms. As has been
noted previously, for § — « the left-hand side of
Eq. (14) is important only in the region of dis-
continuity. Since ¢/p — 0 in the high-S limit, this
remark is equally true for Eq. (H.2). The pre-
domirance of the highest derivatives of W follows
from the same consideration.

To calculate the effect of viscosity in the region
of discontinuity, we may proceed as in Sec. V, using
Eqgs. (13) and (H.2). We note that the viscous term
is of order g/ppe relative to the inertial term.
Therefore (unless ¢ < 1) the viscous term will
predominate, and this is the situation that we will
consider here. Since the sW’ term is negligible
except in the limit of Appendix C, we note that the
mass density now completely disappears from the
equations, and is replaced by an ‘‘effective mass
density”’ s, = g/pe’. Thus we may adapt the analysis

(H.2)

FurtH, KILLEEN, AND ROSENBLUTH

481
of Sec. V simply by replacing 5 with p,. The basic
scale unit ¢ of Eq. (34) now becomes
e = (¢'i*/2a8 |F")} (H.3)

so that
e, = (1/p)2aS |F’| ¢/7h)}. (H.4

Equations (31) and (32) are unaltered except in the
interpretation of ¢, and Eq. (33) becomes

U = UL = 46 = —¥(0 — 8).
We note that the homogeneous equation
U —UA—-160)=0

is derived from the variational form

A= f: 6 [(U") + %o“U’]/f_i 40U (H.6)

(H.5)

80 that there is a set of positive eigenvalues A, with
a lowest eigenvalue of order unity. Thus the solution
of Egs. (32) and (H.5) proceeds in a manner very
similar to the solution of Eqs. (32) and (33). In the
growth rates of Eqs. (50), (57), and (59), we may
simply replace 5 by p, and obtain approximately for
the “rippling” mode,

=/ 71\

for the “tearing”’ mode,

1(287* |[F'["\{{ 1 1
pa g (B (G + ), e

ag
and for the gravitational interchange mode
PN
i) @
where the fastest growing modes have A = O(1).
We note that our previous results are left qualita-
tively unaltered. For the “rippling” and ‘“tearing
modes, the effective mass density p, becomes large
as § — o, and the thickness ¢ of the region of
discontinuity then increases, while the growth rates
are depressed somewhat. For the gravitational inter-
change mode, we have

e, = (qA/7G)F)*”, (H.10)

which is independent of S. Therefore ¢ and p are
altered only by constant factors.

APPENDIX 1. EFFECTS OF CYLINDRICAL
GEOMETRY

When applied to nonplanar current layers, the
stability analysis of the plane resistive current layer
must be extended in two major aspects.
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(1) Allowance must be made for the destabilizing
force associated with a negative plasma-pressure
gradient along the radius of curvature; this effect
has been simulated approximately in the planar
analysis by means of a gravitational field, but an
exact interpretation of G remains to be given.

(2) For long-wave modes, i.e., particularly for the
“tearing’’ mode, which is always long-wave in the
present sense, the cylindrical geometry modifies the
solution in the “outer region,” and therefore affects
the value of A’ to be used in the dispersion relation.
We will treat the usual high-S limit.

Interpretation of G
To generalize the planar analysis, we will use a
cylindrical coordinate system where £ — r, y — r,
and z — 2. Thus the zero-order configuration is
given by
B, = 0By(r) + 2B.o(r)
and the perturbations are given by
fitr, & = fi(r) exp [i(m8 + k.2) + wi].

In analogy with quantities defined in Sec. II and
Appendix A, we will write

¥ = B,,/B, W = —w, kg,
x = (ia/B)[k.Boy — (m/n)B..],
V = rrlkve — (m/rhv.l,
F = [(m/r)By, + k.B.o)/kB,
H = [k.By — (m/r)B,)/kB,
k= (k + m'/RY)},
where R is the radius of F = 0. We will use %, =
k./k, R = R/a.

As in the planar analysis the effect of the de-
stabilizing mechanism appears only in a small
region r =~ R, and for convenience we will specialize
our equations to hold in this region. Since we are not
concerned here with the “rippling” and ‘“tearing”
modes, we may neglect the », and F” terms in

what follows. Thus we obtain from the pressure-
balance equation [Eq. (9)]

o/ YW’ = Fy'’ — 2k, (Ho/B)x, (1.2

vhere Hy, = Bg,/B. The independent variable is
p = r/a. In deriving Eq. (I.2), we have made the
usual approximation (cf. Sec. V) that for zero-order
quantities ¢} << fo. In the present context, this
includes ¢ << £. We have also neglected terms in ae,
which was found to be appropriate in Sec. V.
Finally, we have used ¥’ < x, which is justified in

(I.1)
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Appendix A. [From the latter remark and from
Eq. (10), it follows incidentally that kB, = 0 in
the region of discontinuity, so that Bs,, B, and
x all have the same r-dependence.] From Ohm’s Law
(Eq. 8), we obtain

V' = (p/a)y + F/DW (1.3
as before, and we now need the additional component

v =Bx+ Ly
7 7

i) -gu] s

Equation (I.4) in turn introduces the dimensionless
velocity component V in the k x B direction, so that
we must make use of the appropriate component
of the pressure-balance equation, and obtain

BV = abx + ¢|:E,a<H$ + %) - %’H:]- (L5
(The x and W terms of Eq. (I.4) are now seen to be
of order p*/a’S’¢(F')* ~ p'/aSF' ~ G/(F')* K 1
[ef. Eq. (59)] relative to the V term, and are neg-
ligible except in the special limit of Case 2, dis-
cussed below.)

Using Eqgs. (I1.2-1.5). we may now carry out an
expansion procedure like that of Sec. V using

6= (u — R)/e

It is convenient to introduce 8, = 4xP,/B?, for
which the zero-order pressure-balance equation
gives

8, + HHj} + Hy/R + HH! =0. (L.6)

We also use x = QX, where @ = ep/47, and we
recall U = W4eF'/p. The equations may then be
written

%’ — 16U = by — g—,% NG )
PY/AE = Qdy + 8,U), (L8)

X 6 )
FrA X(4 + 4eQ
_ k.85 k.8, + 2H3/R)
= —4 wor'H, v+ ¥, U. (1.9

It is of incidental interest to note that F” is related
to the “magnetic shear’” by the equation
F' = —Fk.H,[log (H/uH.)) .

We next eliminate X from Eqgs. (1.7) and (1.9),
obtaining a fourth-order equation, and we solve by
expanding U as in Eq. (40). We obtain
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[

a,.[(n + D+ }+ e + BEE 2”3/3] - [

2R(F')?

T R e 469)] f 6y dup. (110)

Making the constant-¢ approximation, as in section V, and using the integrals listed below Eq. (46), we

obtain

m=0

NPT {m + 3 + 260 + [R/4€QR(F'Y][(m + B + 2¢0(8; + zH:/Rn} T(m + )
(m + Dm + § + 2¢0) + [KZ/8R(F')'1(8; + 2H3/R)

We will be interested mainly in short-wave
instabilities, so that, as in the plane case, we have
A’ = —2a, where a > 1. We note immediately
that 8 > 0 is sufficient for stability. (If B,, = 0,
then the point F = 0 occurs at 8, = 0, so that there
is no instability.) We note also that €2 cannot be
greater than of order 8)/(F’)*, if the right-hand side
of Eq. (I.11) is to be negative. Thus we may neglect
2¢6Q relative to m + 1.

We now obtain the growth rate for g8, < 0.
Since e —» 0as S — o, the 8}/ term in the numerator
will predominate on the right-hand side of Eq. (I.11),
unless @ becomes large. Thus the finiteness of A’
implies @ — «, which in turn implies that the sum
of the series in Eq. (I.11) goes to zero.

As has been noted in Sec. V, in the present
analysis of finite-conductivity interchange modes
of the gravitational type, we must restrict ourselves
to a range of parameters such that the infinite-
conductivity modes are stable. Thus the Suydam
criterion, 885k%/R(F')* < 1, must hold. In that case,
the B!-contribution to the (8, 4+ 2H?2/R)- terms in
Eq. (I.11) is seen to be negligible relative to the
(m + 2) terms. The (2H?/R) contribution is also
negligible when (H,k,/RF’)* < 1. This is the usual
case, which we will refer to as Case 1. The opposite
condition is satisfied for Case 2.

Case 1 is the case of large shear. This appears
more clearly if we write the defining condition as

(log (Ho/uH))"* > (H,/uH ). (1.12)

In order that the series should be near a null we
require

k285 /QR(F') =2 5. (1.13)

Evidently there is only a single null, corresponding
to the growth rate

p = (28ak% |8 7/5 |F"| BaDE.  (1.14)

Thus we may identify the quantity G of Eq. (59)
somewhat loosely with —%28;/R. We note, however,
that the pressure-gradient-destabilization term in
Eq. (I.7) is not effectively identical with the
gravitational-force term in Eq. (33)—for example,
it gives rise to only a single unstable mode instead

FurtH, KILLEEN, AND ROSENBLUTH
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of to a whole spectrum. Also, allowing for finite
compressibility does not affect the present result,
while we have seen in Appendix A that the true
gravitational mode is somewhat modified.

Case 2 is the case of small shear, where the
opposite of Eq. (I.12) holds. If the Suydam criterion
is to be satisfied also, Case 2 can occur only for
8 |8} < Hi/R. From Eq. (I.11), one estimates
then that

p ~ (Sak, 83| 7/He")}.
The Tearing Mode

(I.15)

Only the solution in the “outer region’ is affected
by cylindrical geometry. From Eq. (9), withv = 0,
one obtains a second-order differential equation for ¢,
similar to Eq. (20), but somewhat less tractable.
Given m and «,, one may calculate A’ as in Seec. III;
or else one may set A’ = 0, as in Appendix G,
and obtain a stability condition on m and «,. To do
the complete analysis, goes beyond the scope of this
paper, but several points perhaps deserve comment.

1. Except for the m = 0 mode, the quantity «
can no longer be made arbitrarily small, since

)- (1.16)

2 2

m
o = y:d (l + =2
20l po

From the plane results (Appendix G) we know that
small a is most unstable, and similarly we expect
small m and large £ to be most unstable here. We
note also that large Byo/B., prevents low-a modes
form > 0.

2. A plausible approximation'® is to treat the
layer itself as being approximately plane (¢ < R),
so that Eq. (20) applies, and to use the familiar
Bessel-function solutions in the vacuum regions.
This is a useful method for proving instability in the
case of the more unstable configurations, (for ex-
ample, most ‘‘stabilized pinches”). From the point
of view of obtaining exact stability criteria, this
approach is unfortunately not wholly satisfactory,
since one finds that stability cannot be achieved
under the conditions where the approximation is
both valid and useful. That is to say, stability
requires either a ~ R, or else Byo/B.o |.. ~ R/a,
(for either of which Eq. (20) is inadequate); or else,
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there must be close-fitting conducting walls, so that
the plane approximation holds in the vacuum
region also, if it holds in the current layer itself.

Note added in proof. The marginal stability prob-
lem for the “tearing’”’ mode in cylindrical geometry
is closely related to the problem of ‘neighboring
equilibria” investigated by Rebut.®’” The neighbor-
ing-equilibrium analysis, however, necessarily con-
@ P. H. Rebut, J. Nucl. Energy C4, 159 (1962).
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fines itself to P, = 0 at u = p,, whereas we have
seen that the “tearing’” mode exists more generally.
If P; = 0 at u = po, then x becomes discontinuous
as p — 0; but for large p there is no such difficulty.
Further results on the cylindrical stability problem
with P, = 0 at pu, = O are given in references
38 and 39.

s H. P. Furth, Bull. Am. Phys. Soc. 8, 166 (1963).
s H. P. Furth, Bull. Am. Phys. Soc. 8, 330 (1963).
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INSTABILITY OF THE POSITIVE COLUMN IN A MAGNETIC FIELD
AND THE ‘ANOMALOUS’ DIFFUSION EFFECT*

B. B. KADOMTSEV and A. V. NEDOSPASOV
Institute of Atomic Energy of the Academy of Sciences of the U.S.S.R., Moscow

(Received 9 February 1960)

Abstract—The positive column of a gas discharge is shown to become unstable when a sufficiently large
longitudinal magnetic field is superimposed. This instability causes oscillations which lead to an increase
in the flux of charged particles striking the walls; that is, in agreement with the experimental results, there

is an increase in the effective diffusion.

1. INTRODUCTION

Tue diffusion of electrons and ions across a magnetic
field is a problem which is of considerable interest to
plasma physics but it is one which up to the present
time has yielded some very conflicting experimental
results (GUTHRIE and WAKERLING, 1949; SIMON, 1955;
BosTick and LEVIN, 1955; NEDOsPAsov, 1958;
LEHNERT, 1959; HOH and LEHNERT, 1959; ZHARINOV,
1959; ELLIS et al., 1959; SirGu and GRANOVSKII, 1959
and VASIL’EVA and GRANOVSKII, 1959). In addition,
in a number of experiments (GUTHRIE and WAKERLING,
1949; Bostick and LEVIN, 1955; LEHNERT, 1959;
HoH and LEHNERT, 1959; ZHARINOV, 1959 and
ELLIS et al., 1959). an anomalously large diffusion of
the plasma across the magnetic field has been observed.
Consequently, experiments on the diffusion of the
plasma in the positive column of a gas discharge
are of special interest and in this connexion we would
particularly cite the work of LEHNERT and HoH (1959)
and also LEHNERT (1959). In the absence of an applied
magnetic field this type of discharge is well understood
both theoretically and experimentally. It therefore
forms a convenient subject for theoretical treatment
and for comparison with experiment. It is to this
problem that the work reported here was devoted.

LennerT and HoH have measured the electric field
E along the positive column as a function of the mag-
nitude of the longitudinal magnetic field H. With
magnetic fields which are not too strong they found
that the electric field falls off as H increases
in quantitative agreement with the theoretical form
of the dependence of the ambipolar diffusion coeffi-
cient on the magnetic field strength. However, at a
certain critical field H,, which is of the order of
several kilogauss, the character of the dependence of
E on H was found to undergo a sudden change; the
electric field increased with H and in some cases it
actually exceeded the value at H = 0. This increase

* A translation by D. L. ALLAN of this paper originally submitted
in Russian.

in E provides indirect evidence that the diffusion
coefficient is considerably larger than the ‘classical’
value derived from a consideration of collisions be-
tween the electrons and ions with neutral gas mole-
cules.

We show below that this effect can be explained by
the instability of the positive column in the longitu-
dinal magnetic field and by the development of oscilla-
tions of the ‘diffusion’ type.

2. INSTABILITY OF THE POSITIVE COLUMN

One can see from a simple qualitative argument
that a longitudinal magnetic field can lead to a loss
of stability of the plasma current channel. In the
absence of a magnetic field any disturbance of the
plasma will be rapidly terminated by the increased
diffusion of particles from regions of excess density.
In particular, the twisting and wriggling of the current
channel causes an increase in the flux of particles
striking the wall at those places where the channel
comes close to it and a decrease in the flux on the
reverse side. This has the effect of restoring the origi-
nal state of the plasma. In the presence of a magnetic
field there is an additional force (1/c)j x H acting on
the plasma, where j is the current density. With a
helical distortion of the plasma this force acts either
towards the axis of the discharge or towards the walls
according to whether the helix is right or left-handed.
When this force acts in the direction of the walls there
is a build-up of the initial disturbance. As the magnetic
field is increased this force becomes greater and the
transverse diffusion, and along with it, the stabilizing
action of the walls is reduced. Thus, for sufficiently
large magnetic fields the plasma column becomes
unstable.

In order to investigate this stability problem we
will make use of the diffusion equations for electrons
and ions:

on

or

on

+ div nv, = 3

+ div nv, = Zn. ()]
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Here n is the electron (and also the ion) density.

Z = Z(T,) is the number of ionization events per
electron per unit time, 7, is the electron temperature,
v,, v, are the directional velocities of the electrons and
ions which may be found from the equations of
motion.

For the electrons, the equation of motion has the
form:

Megn—— 2w xvt+ivw-Y
mn mc m T
where m is the electron mass, 1/7 is the collision
frequency and ¥ is the electric field potential. With
Qr = (eH|/mc)T > 1, we obtain from equation (2):

VV—B-lthn +

v =gt ar
b, D, Vn
Tan @
3V D on
bee = be 5> Pz noz &)

where h = H/H is the unit vector along the z-axis,
b, is the electron mobility and D, is the electron
diffusion coefficient.

We will further suppose that the frequency of the
collisions between the ions and the neutral gas mole-
cules (1/7,) is much greater than the cyclotron fre-
quency eH/Mc and also much greater than the
frequency of the oscillations we are cansidering. With
this assumption we can neglect the effect of the
magnetic field on the ions and also the inertia of the
ions. We then obtain:

v,= —bVV @

where b, is the mobility of the ions. We have neglected
here the diffusion of the ions. It can be shown that
taking the diffusion of the ions into account introduces
only a small correction of the order of the ratio of the
ion temperature to the electron temperature.
Substituting the expressions for the velocities (3)
and (4) into (1), we obtain two equations for n and V:

on b,

at+ h. VVXVn—(Q)ZA +‘Q)2
7} av an) _
XdlvnV V+ (bnaz D‘é? =2Zn (5
a”—b div nVV = Zn 6)
a S

In the equilibrium state # and ¥ depend only on dis-
tance from the axis of the discharge tube. We will
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suppose that the mean-free-path of the ions 4, is much
less than the radius of the tube a. Then, as a boundary
condition, we can equate the density at the wall to
zero (Shottki condition), whereupon from (5) and (6)
we obtain

v, D, 1dn

no(r) = NoJo(Bor), Z W ”_o e

Z= %—wa_ 7
al + E-l (01)2 ( )
Here f, = (ap/a), o, is the first root of the zero

order Bessel function J,, N, is the density at r = 0.

In order to obtain the stability conditions we
must find the frequency of the small oscillations of
of the current channel. Because the equilibrium state
has cylindrical symmetry we can choose a perturbation
of the form f(r) exp (imy + ikz —iwt) where y is the
azimuthal angle. The linearized equations have the

form:
:—xw —Z + ikvy + k2D, +Z-n-£—dd—l:}n’—
D b, 1d dv,
_ e A ’ e _ 2% 0 _
Q)2 1 Q2 r dr (rn dr)
im b, dn, m? b,n,
k2 il 0 - 20} 7
{ bero + Qfdr+r2 Q)2 Vit
b, ld( a’V)_O 8
(Q-r)zr dr "o dr] ®

(—io» — Z)W' + bkngV’ + b, 12 oV’
r

_bld(dV' ) )_0 .
camgytr—5)=0 O

Here v, = b,E is the directional (current) velocity
of the electrons in the equilibrium state and E is the
longitudinal electric field.

To the equations (8) and (9) we must now add the
boundary conditions. The first two boundary condi-
tions imply that n" and V' are regular at r = 0, the
third condition is that the density at the wall is zero
and the fourth follows from the equality of the electron
and ion currents to the wall. Since (1/n)(0n/or)
~ (1/,) is a constant at the boundary, then the last
condition is satisfied if the potential ¥ is finite at
the wall.

An accurate treatment of the set of equations (8), (9)
is rather difficult, and therefore we will find an approxi-
mate solution, specifying a certain radial dependence
for n' and V’'. We will confine ourselves here to

dv,

MHD STABILITY AND THERMONUCLEAR CONTAINMENT



232

perturbations for which |m| = I, since such pertur-
bations will define the region of stability. It is also
natural to choose a density dependence of the form
n' = mJy(Byr), where B, = (x,/a) and «, is the first
root of the Bessel function J;,. We will adopt the
same form for V', that is V' = V., Jy(8,r); the reason
for this choice will be apparent later.

Let us substitute these expressions into equations
(8) and (9), multiply them by J;(8,r)r dr and integrate
with respect to r. We then obtain a set of two alge-
braic equations for n, and V;:

Dp2z . L
—iw — 1 2 c — —_—
iw Z+1kv,,—)—kD,_,—)—(‘r)2 thTX
% DBy Y D.B¢ m
——— - e | 5
1+ lbi' (Qr)? (Qr) 1 + % (Q-r)z} n

. be beﬂlz}
— — 2_°¢ V, =
{kzb, thﬂo [ + C (QT)2 1 0 (10)

b, OD, B2
—iw—z+b—'Q—b"3°—- A ChBEV, =0
1+ @

(In

Here n° is some average value of the unperturbed
density and 4 = 066, C = 0-79, L = 0-74 and Q =
1-56 are the constants appearing after integrating.

In equation (11), we have neglected the motion of
the ions along the z-axis in view of the fact that
b,/b, << 1.

/Putting the determinant of the set (10), (11) equal
to zero we readily obtain the dispersion equation for w.
We have a stable condition only when the imaginary
part of the frequency is negative. Using the dispersion
equation, this condition can be written in the form:

b
KX4 4+ FX? + G > mBv* XE‘ (12)
where
_K=1-28+y; F=0-8(y+2);
Wy +1 y
_0-48(1 + y) . b, 1
G = 0-1 515y (13)
kQr Vo b,
B=0163; X=—; v¥=—; = = (Qr)?
A S

From relation (12) it can be seen that the instability
arises only when m > 0 and when the electron drift
velocity v, is sufficiently large. The plasma is stable
when there is no longitudinal current.
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In a long tube arbitrary values X are possible.
Therefore the plasma becomes unstable when the left-
hand part of (12) turns out to be equal to the right-
hand part at a unique point. In this case the deriva-
tives of both parts will be equal too. Differentiating
the equality (12) with respect to X, multiplying the
result by X and subtracting one from the other we
obtain a biquadratic equation for X, whence:

oo —F+ VF? + 12KG
o 6K ’

* 2b; 2
v* = b, X (2KX?% + F). (14)

Relation (14) determines the boundary of the sta-
bility region v* = v*(p) where v* = (b,/B)(E/D,) =
(eE[BokT,). The electron temperature is a function of
E/p and is well-known experimentally (KLARFELD,
1941; KARELINA, 1941) and the same is true also of
the mobilities b;, b, (ENGEL, 1955; GRANovskil, 1952).
Using these experimental results we can calculate v*
and b,/b, for those values of E for which the mono-
tonic dependence of E upon H has been observed to
break down and then, using (14), we can find y and so
find a theoretical value for the critical magneticfield ...

We carried out this calculation for helium. We
took the values of the electric field corresponding to
H = H, from the experimental results of Hou and
LEHNERT and the values of T, were taken from the
work of KLARFELD. A comparison of the calculated
values H, with the experimental values H,, is given in
Table 1.

A result corresponding to the last row and first
column of this table has not been computed, for here
the conditions are such that it is not possible to ignore
the action of the magnetic field upon the ions.

A similar calculation was carried out for argon but
in this case there is only one experimental point:
H,, = 3-7 kgauss with a =1 cm and p = 092 mm
Hg. Once again the calculated value of the critical
field H,, = 3-3 kgauss agrees well with the experi-
mental value.

Since all the coefficients in (12) are roughly of the
samg order of magnitude, X turns out to be of the
order of unity, i.e. the instability develops for long
wave perturbations ka = (x,X/Q7) < 1. This explains
why, in the experiments of LEHNERT and How, the
dependence on the length of the tube L disappears
only when L/2a > 50. For shorter tubes X is restricted
to lower values. Thus, depending on the actual
relations between the various parameters in (12) the
plasma channel will either become stable again as
H increases or it will be stable with respect to
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TABLE 1

@ | omxmmHg 0-24 0-45 089 | 145 i 16 { 1-8 30

a | cm 0535 1 1 1 0535 1 1
H.lp ’ kgauss/mm Hg 55 36 24 16 19 15 09
H.lp kgauss/mm Hg 51 28 20 16 15 14 10
(He") 1
H.lp ‘ kgauss/mm Hg — 33 2:1 16 15 14 10
(He™y) |

perturbations with m = 1 at all values of H. In the
latter case, the loss of stability will occur when oscilla-
tions with m > 1 arise.

We will now return to the question of the choice
of the radial dependence for ¥’. Let us multiply
equation (9) by [b,]/[b,(Q7)?] add it to (8) and neglect
small terms of the order

b; ( eH )2
57" \Me™) -
Then, by virtue of (7), we obtain:

1 dno;

Deﬂoz ﬁ m _ T
r(1 -+ y)Bo* ng dr

X v* 4

mdny
V
b, lag

(15)
By making use of the condition (12), one can show
that when the plasma becomes unstable the left-hand
side of (15) turns out to be everywhere positive except
in a small region near the wall where it changes sign
and goes to a finite negative value as r — a. Since the
density n’ near the wall is small, this region makes
only a small contribution while for the remaining
values of r the function Jy(8,r) is a satisfactory approxi-
mation for V.

n/

3 ‘ANOMALOUS’ DIFFUSION

The oscillations of the plasma current channel
which arise as a result of the instability lead to the
appearance of an azimuthal electric field. The elec-
trons are therefore able to drift in a radial direction
which, when averaged, appears as an increased mobil-
ity across the magnetic field; in other words, we
have an ‘anomalous’ diffusion.

For the purpose of providing a quantitative descrip-
tion of this effect we can no longer use the linearized
diffusion equations. Provided that the magnetic field
is not much larger than H,, the amplitude of the
oscillations will be small and can be treated as har-
monic. Then, as before, we can write

n = nyr) + ny cos (y + kz — wt) J1(By),
V = Vo) + Vicos (yp + kz — wt + 8) J,(Byr)  (16)
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where the phase shift 6 can be considered to be
approximately independent of r.

Substituting these expressions into equations (5)
and (6) and averaging over time, we obtain

‘l‘i"in i) D, d”o+ b, nV,sin &
ra" @@ T @ypa o 2
b, ,
x 1} (Byr) + m By m V' Jy(Bir) X
/ cos &
X Jy'(Bir) ) =Zn, a7
1d dv,
“ra’ ‘bf"OT,o + b;mVy By Jy (Br) x
, cos
x Jy'(Br) > = Zn,. (18)

When the amplitude of the oscillations is small, the
approximate solutions of equations (17) and (18) can
be found by putting
1dny D,

1y = NoJo(Bor), T ;‘;—;56(1—4_}}—) S,
where S = const.

We will now insert this into equations (17) and (18)
multiply them by Jy(8yr)r dr and integrate with respect
to r. From the equations obtained we can find Z and
S:

b, DBy ¢—Dd+y
_Emd)’ S—qS—pTctgé.
(19)

Here ¢ = 1 4 Qr s.sin 4, s is a small quantity of
the order of the amplitude of the oscillations and
p = 2:6 is a constant which is expressed in terms of
the integrals of the Bessel functions.

In the equations for small oscillations we can
neglect the non-linear terms since they contain second
harmonics which disappear when averaged over a
half-cycle. Thus »" and ¥’ may once more be con-
sidered as complex quantities and the only change we
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have to make to equations (8) and (9) is to replace Z
and dV,/dr by the new values.

Making this change and repeating the calculation,
we obtain the following dispersion equation (m = 1):

io [C1+y) X2 (%)2 b, }_D,ﬂf
el S ) s - g

4 2 2
x{iQT“—“u*XJrl—(i“) ¢+X2[1+(°'—“) x
3 oy a

1

o) Tl ()
SL
C(l + (= +4 0 C
20)
The condition Im w = 0 takes the form:
1+}’+0'7BS_0'5¢.X4+
y1+y)

+ 0-8y + 1-8 —};}O'GS — 08¢ X4 0-8(1 — 04g) x

14y ! b, 1:3S — 0-34 b, .,
X 7 +0]b.- Ty —0163b1Xv (¢3))]

It then follows that the frequency of the oscillations
given by equation (20) is approximately

b, Z')D,/f?1

w~b {1 — 044 + X3

22
From the equation for the ions it is not difficult to
find the phase shift 6. It is given by the relation:

b Dcﬂo

b, (I + y)o

Inserting (22) and (23) into (19) we find the relation
between S and ¢:

ctgd =

QS — 4). (23)

13+ X2 — 07¢
15 + X*— 094

By specifying a definite value for ¢ and substituting
(24) into (21) we obtain an equation for X and y.
Stationary oscillations are possible only where equa-
tion (21) is satisfied at the unique point where the
curves defined by the right and left-hand sides of (21)
touch tangentially. From this condition we can
determine the theoretical curve v* = v*(y, ¢). On
the other hand we know the form of the dependence
v*(E/p) experimentally and, furthermore, according
to (19)

S=¢ 4

Elp =f( 1—%’@),

where f(ap) is the experimentally determined depend-
ence of Efp on ap in the absence of a magnetic field.
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We will find y = y(¢), and consequently the relation
between E and H in the presence of steady oscillations,
by finding the intersection of the curve r* = v*(y)
calculated in this way with the curve defined by the
condition Im w = 0.

In Fig. 1 the curve obtained on the basis of these
calculations is compared with the experimental results
of Hon and LeHNERT for the values a =1 and
p = 0-89. It can be seen that there is not only quali-
tative agreement with the experimental points but,
furthermore, good quantitative agreement up to a field
H = 3 kgauss. At this value of the field ¢ =4, i.e.
the averaged flux of particles at the wall is four times
greater than the diffused flux. The departure of the
theoretical curve from the experimental points when
H is increased further may be due either to the approxi-
mations made in solving the equations or to the
appearance of oscillations having a shorter wavelength
(in particular, those with m > 1).

4. SCALE RELATIONS

Equations (5) and (6) describing the diffusion pro-
cesses in the plasma have the specific property that
length, time and magnetic field enter into them only
in combination with the pressure; that is, in the form
ap, tp, H[p. This is because Z is proportional to, and b,
D and r inversely proportional to the pressure.
Equations (5) and (6) still depend implicitly on the
electron and ion temperatures and these are deter-
mined by the energy balance, i.e. ultimately by the
quantity E/p.

This means that if we have two geometrically
similar systems with identical parameters ap, E/p and
Hip equations (5) and (6) coincide for both systems and
the processes which take place in these systems will
differ only by the time scale. This is still the case when
the action of the magnetic field on the ions and the
diffusion and inertia of the ions are taken into account.

Furthermore, equations (5) and (6) are linear with
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respect to the density n, i.e. the absolute magnitude
of n or, in other words, the magnitude of the electric
current in no way affects the processes which take
place in the column.

Thus, if the degree of ionization is so small that
electron-ion collisions can be neglected, then we have
the following scale relation: E/p and w[p are
functions of ap and H/p only and are independent of
the magnitude of the current. A comparison of the
experimental dependence of E on H obtained by
Hon and LeHNERT for different values of a and p
shows that such a scale relation is in fact valid.
This can also be seen from the table of critical field
values H, (Table 1).

5. CONCLUSION
We have seen that the positive column of a gas
discharge becomes unstable if the magnetic field ex-
ceeds a certain critical value H,. If the magnetic field
is only a little greater than H, then regular oscillations
build up in the plasma with a frequency

o 105,D,
/= o Qrb,a?

which, for helium and the experimental conditions of
LEHNERT and HoH, is roughly equal to 10 kc/sec. It
seems possible that such oscillations would explain
the effect observed by. FABRIKANT and ROKHLIN
(1938) who found that the maximum electron density
occurred off the axis of the discharge when a magnetic
field was applied.

One might suppose that with a further increase of H
even higher harmonics will be excited and the oscilla-
tions of the plasma channel will eventually become
irregular and chaotic. Such a situation can be identi-
fied with the turbulent state of the plasma first men-
tioned by BoHM (GUTHRIE and WAKERLING, 1949). By
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analogy with normal turbulence, one might attempt
to formulate a theory of such a turbulent discharge
but to do this it would be desirable to have more
complete experimental data on the intensity and
spectrum of the oscillations.
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Stability of Plasmas Confined by Magnetic Fields'
M. N. RosenBLuTH* AND C. L. LONGMIRE

Los Alamos Scientific Laboratory, University of
California, Los Alamos, New Mezico

In this paper, we examine the question of the stability of plasmas confined by
magnetic fields. Whereas previous studies of this problem have started from
the magnetohydrodynamic equations, we pay closer attention to the motions of
individual particles. Our results are similar to, but more general than, those
which follow from the magnetohydrodynamic equations.

I. INTRODUCTION

The problem of the behavior of highly ionized plasmas in electromagnetic
fields has recently become the object of considerable interest (1). Although there
is little more involved in the problem than Newton’s laws and Maxwell’s equa-
tions, there are many questions one can ask to which the answers have been by
no means obvious or even easily calculable. Two of the several rather broad
areas into which these questions fall are the following.

(a) The existence and properties of stationary solutions of the equations.
Here, “‘stationary’ is not meant to imply that fields and particle positions or
velocities are absolutely constant, but that averages of these quantities over
times longer than the Larmor period and over the statistical particle distribution
are constant. Collisions between the particles are to be ignored. Effects to be
considered are the diamagnetic and electric effects of the charged particles on the
fields, and, conversely, the effects of the fields in influencing the particle dis-
tribution function.

(b) The stability of these stationary solutions under arbitrary perturbations
of the plasma configuration. Here again collisions are to be ignored. It is known
that collisions produce a diffusion of charged particles across magnetic fields,
but we are interested here in instabilities, similar to those in hydrodynamics, in
which locally coordinated motions of the plasma occur under the influence of
the average electromagnetic fields.

Although problems falling under category (a) have been solved in only the

1 Work performed under the auspices of the Atomic Energy Commission.
* Now at General Atomic Division, General Dynamics Corporation, San Diego, Cali-

fornia.
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simplest cases, there seems to be no question of the existence and general nature
of the solutions. We turn our attention in this paper to the problem of stability.

One method of attacking the problem is through the Boltzmann equation
(actually the Liouville equation, since collision terms are dropped). On taking
the first three moments of the Boltzmann equation with respect to the velocity,
one obtains macroscopic equations expressing the conservation of mass, mo-
mentum, and energy (2). These equations cannot be solved, since they contain
more moments of the velocity distribution as unknowns than there are equa-
tions. The usual procedure at this point is to assume that the pressure tensor is
a simple scalar, and remains so during the perturbations, and to neglect several
higher moments. One then arrives at one or another of the forms of the magneto-
hydrodynamic equations.

This procedure is risky because of the guessing involved. It would appear to be
especially risky in a problem such as the present one in which there are no
collisions helping to keep the pressure tensor nearly a scalar, although it can be
argued that the restraining magnetic field partly plays the role of collisions. To
put the objection as strongly as possible, consider the following example. For an
ordinary gas, if one assumes that the pressure tensor is a scalar, the above pro-
cedure leads to the equations of hydrodynamics, even if the particles are as-
sumed not to undergo collisions. Characteristic of the solutions of these equa-
tions are the familiar sound waves. But certainly in a gas without collisions, dis-
turbances will not at all propagate and oscillate like sound waves.

While this illustration of the danger is undoubtedly overdrawn, it seems wise
at least to check stability results based on the magnetohydrodynamic equations
(8) by other methods when possible. In this paper, we approach the stability
problem by discussing the orbits of individual particles.

Watson and Brueckner (4) have also succeeded in improving on the magneto-
hydrodynamic approximation by a more careful treatment of the Boltzmann
equation (which, of course, knows all the answers). While this formal approach
through the Boltzmann equation may likely provide the most accurate and
rigorous treatment of more complex situations, we believe the more mechanistic
approach used in this paper better illustrates the physical factors involved in
the instability.

II. FIRST ORDER ORBIT THEORY

In this section, we review briefly the theory of charged particle orbits in slowly
varying fields. This theory has been developed by Alfvén (1), Spitzer (5), and
others.

In a magnetic field B which is constant in space and time, the trajectory of a
charged particle is a helix with axis parallel to the field lines. The center of
revolution of the particle is called its “guiding center.”” The guiding center moves

110 MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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with constant velocity along a field line. The kinetic energies due to motion
parallel to B, denoted by w) , and perpendicular to B, denoted by w. , are arbi-
trary. The radius r of the helix and the angular (Larmor) frequency are’

muc _eB
" eB’ T e @)

where m and e are the mass and charge of the particle, v1 is the magnitude of
the component of velocity perpendicular to B, and c is the light velocity. The
circular motion of the particle relative to its guiding center produces, after a
time average, a magnetic moment g which is antiparallel to B with magnitude

u = ’wJ./B. (2)

Thus, plasmas tend to be diamagnetic. However, we shall not introduce a mag-
netic susceptibility to cover these diamagnetic effects, but shall use directly the
average electrical currents which are responsible for the diamagnetism. If one
has a distribution of magnetic dipoles giving rise to a magnetic moment M per
unit volume, the electric current J., associated with M (which can be considered
to be the source of M) is given by the expression

familiar in electromagnetic theory. In our case

w
M = ——?2‘ B 4)
where W is the total “perpendicular” kinetic energy per unit volume.

The effect of a constant electric field E in addition to the magnetic field is well
known. The component of E parallel to B simply accelerates the guiding center
in that direction. The component of E perpendicular to B can be transformed
away (provided E1 < B) by going to a coordinate system moving with velocity

Vg = §2 E X B. (5)
Since in this system the perpendicular motion is simply circular, we see that, in
the original system, the guiding center drifts across the field lines with the
velocity vg given by Eq. (5).

Since, according to Eq. (5), charges of both signs undergo the same drift, no
electrical current results from E. if the plasma is neutral. This result is not
altered by collisions between the charged particles, as long as there are no neu-
trals. One is tempted to say that, in a completely ionized plasma in a magnetic
field, the electrical conductivity is equal to zero. On the other hand, one can

2 Gaussian units are used throughout this paper.
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have currents in a plasma [for example, j» given by Eq. (3)] without inducing
potential drops, and this is the basis for the common statement that the conduc-
tivity of an ionized plasma is infinite if collisions are neglected. The explanation
of this paradox is that electric fields and currents are not connected by any
relation as simple as that defining a conductivity.

If the particles are subject to an external force F (such as gravity), currents
can result. Such a force produces the same drifts as an electric field E = F/e,
which are in opposite directions for charges of opposite sign.

While there is no electric current proportional to E., there is a current pro-
portional to dE./dt. Thus we may say that the plasma contributes a dielectric
constant. To see this, let us calculate the displacement of the guiding center of a
particle when E is suddenly changed by AE.. Let us view the particle, both
before and after the change, in the coordinate systems in which its guiding
center is at rest. The difference in velocity of these two systems is, according to
(5),

c
B

Now if the particle is at the point R and has velocity v, its guiding center is at
the point [from (1)]

mce
r-R+e——B2v><B.

Therefore, the instantaneous displacement of the guiding center is

2
mc me
Ar =e—B2(—AV) X B = e—B—zAE.L.
This step is in opposite directions for charges of opposite sign, but in a neutral
plasma the ions contribute by far most of the current. One takes account of this

effect in first order orbit theory either by including a polarization current (emu)

_ pC 6EJ,

= — 6
=B ©
where p is the mass density, or by introducing a dielectric constant
4 2
e=1+4_70" ™

Either of these expressions is clearly valid only in times long compared to the
Larmor periods. An alternative derivation of (7) can be had by taking the low-
frequency limit of the classical expression for the dielectric constant in the
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Faraday effect. Because the dielectric constant (7) is often large, its effect must
be included in the first order orbit theory.

Let us now examine the effects of derivative of B. If B has a time derivative,
electric fields are generated. One effect of these electric fields is to make the
guiding centers move in a way described by Egs. (5), (6), and (7) above. In this
connection, it is sometimes said that the result of the drift (5) is to make guiding
centers move as if they were attached to the magnetic field lines. This statement
is true only when ¥V X E;is parallel to B. We shall not prove this, since the
statement has no essential utility even when true. An example where the state-
ment is not true is the following. On a field produced by a current in a straight
wire, superimpose another magnetic field parallel to the wire. The field lines are
then helices. Now vary the strength of the component parallel to the wire with
time. In this case, the field lines cannot be considered to move with the velocity
(5).

Another effect of the electric field induced by a changing B is to change the
energy wa of the particle. It is well known, and easily shown, that, if the mag-
netic field changes only slightly per Larmor cycle, the ratio w.i/B is almost
constant. Thus, according to (2), the magnetic moment (and angular momentum)
of the particle is an adiabatic invariant. The same result holds if the magnetic
field is static and the particle moves from a region of one field strength to another,
as can be seen by simply transforming the guiding center to rest.

To see the effects of spatial derivatives of B, we divide the nine terms of the
tensor VB into groups of terms and consider each group separately. For con-
venience, we choose a cartesian coordinate system with the z-axis tangent at the
origin to the center line of a bundle of field lines. In zeroth approximation (if
there were no derivatives), a guiding center once on this line would stay on it
and move with constant velocity. We shall find the effects proportional to the
first power of the first derivatives of B.

Consider first the diagonal terms of the tensor VB. If dB./dx and dB,/dy do
not vanish, the bundle of lines has an angular divergence, as shown in Fig. 1. A
particle with Larmor orbit as shown then sees a component of force parallel to
the central line and in the direction of decreasing field strength. This force is

force

Fic. 1. Effect of angular divergence of field lines.
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easily found (using ¥V +B = 0) to be

= (u-V)B. (8)

Since u is antiparallel to B and constant in magnitude as the guiding center
moves along the central line, the effect of this force on the motion parallel to B
can be viewed as resulting from a potential energy uB = w. . One thus finds that
wy + pB = w, + wu is a constant of motion. This result is, of course, exactly
true in a static magnetic field; that our derivation yields this result should be
regarded as verifying the model on which the derivation is based rather than
the result. The model shows how particles are reflected from a region where the
field strength increases sufficiently to bring w, to zero.

Consider next the terms dB./dz and dB,/dz. If these two terms do not vanish,
the central line of the bundle is curved (Fig. 2), and the radius of curvature is,
in general, given by

R

R?
where B, is a unit vector field parallel to B. If, in zeroth approximation, the
guiding center is assumed to move along the central line, the particle will ex-
perience a centrifugal force

= —(Bo-¥)B,

which is perpendicular to B, and this will result in a drift of the guiding center
with velocity

2
i =eiB2FXB =—5%!BOX(B0'A)BO- (9)

This drift, which is in opposite directions for positive and negative charges,

04

Fic. 2. Effect of curvature of field lines.
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makes an electric current which we shall call

- Nevl

: (10)

i

where N is the density of particles.

Next take the terms 0B,/dz and 6B,/dy. If these terms do not vanish, the
magnitude B varies in a direction perpendicular to B. This gradient causes a
force on the magnetic moment of the particle

= —uVB

which is perpendicular to B, and this results in a drift (Fig. 3) of the guiding
center with velocity

cw,
Vo = ;ﬁ Bo x VB. (11)

This drift again makes an electric current, which we shall call
=N (12)

The two remaining terms of the tensor VB are dB./dy and 9B,/dxz. When
these two terms are nonvanishing, the lines of the bundle twist or shear about
the central line. These terms slightly change the shape of the Larmor orbit, but
produce no drifts in first order.

The general problem is now to solve Maxwell’s equations with the currents
jm,Jr, J1,and j2, and to carry forward the evolution of the particle distribu-
tion by means of the drifts in the perpendicular directions and by Eq. (8) in the
parallel direction.

III. MECHANISM OF INSTABILITY IN THE PARTICLE PICTURE

We now assume that a stationary solution of the preceding equations and
Maxwell’s equations has been found, and prepare to discuss the stability of the
solution under an arbitrary small perturbation. In this section, we show, in a
simple case, the details of the mechanism of instability. In more complicated

B strong -
B weak - -

-
B out of paper
Fi1g. 3. Effect of a gradient of B perpendicular to B.
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Fie. 4. Charge separation in gravitational instability.

problems, it is difficult to follow the detailed mechanism. In such cases, the more
powerful energy principle developed in Sections IV and V may be used to decide
which perturbations, if any, are energetically permitted.

The instability of a plasma supported under gravity by a magnetic field has
been studied by Kruskal and Schwarzschild,’ who used the one-fluid equations
of magnetohydrodynamics. We consider now the same problem from the point
of view of first-order orbit theory.

Let the gravitational acceleration g be in the —z direction, and the magnetic
field B lie in the x direction. Assume that the plasma initially has constant tem-
perature and density, and has a sharp boundary on the lower (z) side. Let this
boundary be rippled by a perturbation

Az = a sin ky. (13)

Thus the B lines are parallel to the surface. We suppose that initially (13) gives
the surfaces of both ions and electrons. This situation is soon altered. The drift
due to the gravitational force

mEXB

e B?
will make the ions drift in the —y direction, the electrons in the +y direction.
This will cause charge separation in a layer on the surface of the plasma, as
indicated in Fig. 4. The electron drift is much smaller than the ion drift, and will
be neglected.

If the amplitude a of the perturbation is small compared to the wavelength,
the time rate of change of surface charge density o(y) is

Vg = (14)

% = —Ne |v, | ka cos ky
(15)
= — ngcg ka cos ky

3 A brief sketch of the essentials of the mechanism presented here is given in Kruskal’s
and Schwarzschild’s paper (3).
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where N is the ion density and M the ion mass. In considering the surface charge

density, we are assuming that the charged layer is quite thin. For small ampli-

tude a, we may also assume that this charged layer lies in the original plane of

the boundary. The electric field of the charged layer is then easy to compute.
Remembering that the plasma has a dielectric constant

__ATNMc
€~ B 2

(16)
which we shall assume is large compared to unity, we find that a surface charge
density

o = ao cos ky 17)
produces the electric fields, in the plasma,

E, = 4o sin kye **
€

_ 4oy —kz

E, = — cos kye

These electric fields also cause a drift of the plasma, according to Eq. (5). The
components of this drift velocity are

41!'60’0
vy = cos kye*
eB
4wcoy . _
v, = sin kye™**
eB

This velocity field is divergenceless, and, therefore, does not change the density
of the plasma, except at the boundary. The velocity v, at the boundary (z ~ 0)
causes the amplitude of the perturbation to grow according to

da _ dmwc

d_t = - e—B— ao . (|.8)
Comparing Egs. (15) and (17), we find
tor_ et W

.

Finally, combining (16), (18), and (19), we find

d'a
(ﬁ_ = gka
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with solutions

a(t) = ao exp (= V/gkt) (20)

If the sign of g is reversed, the solutions are oscillatory (stable).

It is interesting to note that the rate of growth here is exactly the same as in
the Taylor instability of a fluid supported under gravity by a second fluid which
is weightless. Thus the charge separation is able to overcome exactly the re-
straining influence of the magnetic field. This exact compensation occurs, how-
ever, only in the limit ¢ >> 1. If € is not large, ¢ has to be replaced in (18) by
1 + ¢ = 2 + 4xNMc’/B?; the rate of growth is then reduced and is eventually
proportional to 4/N for low-density plasmas.

The essential mechanism of the instability is the charge separation produced
by the gravitational force. Any force perpendicular to B which is independent of
the sign of the charge will cause such a charge separation. In Section I1, we saw
two such forces, namely :

(1) the centrifugal force on particles moving along curved B lines, for which

g in the above analysis can be replaced by R(y’/R’), where R is again the

radius of curvature of the line; and

(2) the force due to a gradient of B in a direction perpendicular to B, lead-
ing to the drift (11), for which g can be replaced by — (v.*/2)(V LB/B).

If v X B & 0 (i.e., no appreciable currents in the region being considered),
then

1 R
EVLBN —1—5'2

and, to include the two effects, g has to be replaced by

R 1
=g (v +50) @
If the vector on the right of (21) points away from the plasma, i.e., if the plasma
boundary is convex along field lines, the boundary is unstable. When particles
wander back and forth along field lines, passing through regions of varying curva-

ture, an appropriate average of the expression (21) has to be taken. The type of
average depends on the field geometry, and will be illustrated in Section V.

1V. SIMPLE THERMODYNAMIC DESCRIPTION OF INSTABILITY

In this section and the next, we discuss the instability from the thermody-
namic point of view that, if a state of lower potential energy is available to the
plasma, it will seek it out, the extra energy going into kinetic energy of the
instability. This thermodynamic approach rests on the assumption that the
equations of motion will always allow the plasma to move in the direction of
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lower potential energy. In Section III we have seen in detail, in a simple problem,
how such an energy lowering motion is achieved by the plasma. We henceforth
assume that the necessary motions are always possible.

If one takes as the starting point the magnetohydrodynamic equations, it is
easy to justify the energy principle, since the equations of motion can be shown
to follow from minimization of the potential energy, as in mechanics. No such
general proof exists, to the authors’ knowledge, for the more nearly correct
treatments in which the particle pressure tensor is assumed (realistically) to be
not a simple scalar. However, one may certainly say that if the existing con-
figuration has a lower energy than all neighboring configurations, the system
must be stable. It is conceivable that ‘‘overstable’ solutions exist with rapid
oscillations, so that the concept of adiabatic invariants becomes invalid. This
seems unlikely intuitively, but would invalidate Section V.

The potential energy is the sum of the magnetic field energy B2/8x and the
internal energy of the plasma. For simplicity, we make in this section the same
assumption as is made in magnetohydrodynamics, namely, that the pressure
tensor is a scalar. (This restriction will be removed in Section V.) It then follows
that the internal energy of the plasma per unit mass is

» = (22)

where p is the pressure and v the specific volume. In any adiabatic motion,
p~v’ (23)
The simplest situation displaying instability is the gravitational problem dis-
plasma

o\ S S S S
o

" (b)

Fia. 5. Displacement of plasma and field in gravitational
instabilivty. (a) unperturbed; (b) perturbed.
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(a) end view (b) end view
unperturbed perturbed

(c) side view
Fig. 6. Illustration of flute-type instability.

cussed in Section III. In Fig. 5b, we see a possible perturbation wherein some of
the regions occupied by plasma and magnetic field have been interchanged. We
may take the perturbation to be such that the magnetic field and plasma internal
energy are unchanged so the only change in potential energy of the system is the
change in gravitational potential due to lowering of the plasma. Hence, the
system is unstable. We can see that an identical discussion would apply to the
case of Taylor instability in which the plasma and field are to be replaced by
heavy and light fluids, respectively.

A more interesting case is that in which the plasma is confined by a curving
magnetic field. For simplicity, we will discuss an axially symmetric case, periodic
in the z direction in which the plasma is confined near the axis. We will also
discuss the limit where the plasma pressure is small compared to the magnetic
field pressure. In this limit, the magnetic field is nearly identical to the vacuum
magnetic field so that any distortion of the field increases its energy. Hence, the
only dangerous perturbations are those which leave the field unchanged. Such
deformations are the flutes shown in Fig. 6.

The flutes are thus constructed so their surface is bounded by lines of the un-
perturbed magnetic field. It is easily seen that the net effect of the flutes is to
interchange the field and matter that were originally contained in the flux tube
I with those contained in flux tube II, and we will now proceed to calculate the
energy change produced by such an interchange.

Now the magnetic energy in a flux tube is

B B
Eu=f§1-rdV=f8—1rdlA (24)

where [ is the length along the tube, A is the cross sectional area of the tube, and
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f dl is the integral along a complete flux line. But

BA = ¢ = Flux (25)

which is constant along a flux tube. So
1 f dl
Ey = o ¢ 1 (26)

Thus the change in magnetic energy on interchange of flux tubes I and II is:

1 2 [ dl 2 [dIl 2 [dl 2 [ dl
AEM_Q;I:{d,I j;lz+¢11 /;;1} {4’1 Lz'l"i’ll ./;IZ‘}] (27)

Thus, if we want to require no change in magnetic energy, we must interchange
tubes containing equal amounts of flux, i.e., ¢; = ¢1; . (The magnetic field is then
left unchanged.)

To calculate the change in material energy, we use Eqgs. (22) and (23).

The volume V of a flux tube is given by

V=fdlA=¢f%. (28)

Hence, the change in material energy is given by

_ 1 VY V"
AE, = y =1 {PI Vo Viu + pu o

We have used the scalar pressure result that p is constant along a line. If the flux
tubes are nearby, we may expand

Vi—piVi — ann}- (29)

Pu Y41 P (30)
Vu = VI + oV
and find
2
AE, = spsV + vp (8:,/) = V "s(pV")sV. (31)

The condition for stability is that A E > 0. In general, p will decrease as we
move outwards from the axis and as we approach the edge of the plasma, it
must go to zero. Hence, in this region §(pV7") is negative since as p — 0 | ép/p | >
| ¥(8V/V) | and our condition for stability becomes

5f%<0. (32)

Equation (32) is a general result, dependent only on the use of the magneto-
hydrodynamic equations and the assumption of low plasma pressure.
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We now discuss the geometrical significance of Eq. (32).
Figure 7 shows two nearby lines of flux. D is the perpendicular distance be-

tween them at any point. Since B is curl free, f B dl, the magnetic potential is
the same for both lines at the points joined by D. Therefore,

dl dl dl ‘T 1 1 1
'Sfﬁ-HE‘fIE‘de‘[Ef"Eﬁ]‘Bd"’(P‘) (33)

From the same fact, it follows (integrate around the dotted rectangle) that
8B/B = D/R (34)

where R is the radius of curvature of the line, positive if the center of curvature
lies outside the plasma. Therefore,

Bs(1/B*) = —2(D/BR)

Here D can be eliminated by using the fact that the flux between the lines is
constant along their length

2rmrDB = ¢ = constant (35)

where r is the radius of the line relative to the axis of symmetry. Thus the con-
dition for stability (32) in the magnetohydrodynamic approximation becomes
dl
BB > 0. (36)

Note that, by its definition, R is positive at the ends and negative in the middle,
so the middle region tends to make things unstable. In general, the fact that B
is large at the ends will make the middle region dominate so that the system
appears unstable. We may note that dI/R & df, the angle of the flux line with
the z-axis, and that Br’ is roughly a constant so that (36) may be approximated
as

do

s

Since B is smaller in the region of negative df, the situation is unstable.

Fi1g. 7. Illustration of quantities involved in flute instability.
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V. CORRECT TREATMENT OF PLASMA ENERGY

In this section, we shall discuss the flute-type instability of Section IV, trying,
however, to calculate the change in internal energy of the plasma correctly rather
than by the magnetohydrodynamic approximation. To do this, we first look at
individual particles, calculating the change in energy of a particle as the line to
which it is tied moves in a flute-type instability. First we note that there are two
adiabatic invariants of the motion

w.l./B =M (37)
fU" dl = J. (38)

Here w. is the particle energy in the plane transverse to the field, and v, is its
velocity along the line, the integral being taken between turning points or over a
period of the motion.

Equation (37), the constancy of the magnetic moment, has been discussed in
Section II. It is related to the conservation of angular momentum about the
direction of the line and is valid so long as the Larmor radius and period are
small compared to characteristic lengths and periods of the instability.

Equation (38), the invariance of the longitudinal action, is related to conserva-
tion of linear momentum along the line. It is valid if the period of the particle in
its orbit is small compared to the instability period. This is certainly true at the
borderline of stability. We shall not prove Eq. (38) here, relying on the obvious
analogy with classical mechanics. It has been verified in a lengthy derivation by
Chew, Low, and Goldberger.

We also assume that particles remain tied to field lines so that, in particular,
all particles which were orbiting on a field line before a deformation are orbiting
on the same field line following the deformation. This is true in the present
example, illustrated by Fig. 6, so long as the Larmor radius is small compared to
the wavelength of the deformation and the Larmor frequency is large compared
to the characteristic frequency of the deformation.

Since the orbit of a particle, except for uninteresting phases, is determined by
its field line and by the two constants of the motion x and J, it is clear that a
prescription of the deformation which describes the new configuration of the
field lines is adequate to define completely the new state of the system. Thus the
constraints are holonomie, and we can indeed use the variational principle to
determine stability.

It is now a straightforward procedure to construct the change in energy of the
system for an arbitrary displacement. The algebra, however, is quite complex,
and this has not yet been done.

We shall, however, solve the problem for the same case treated in Section IV,
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the flute displacement which interchanges field lines. Again it is sufficient, at
least near the edge of the plasma, to inquire whether the energy of the particles
on a field line increases or decreases when that line is interchanged with a line
further out. In the low plasma density case, B is curl free, and we may incor-
porate many of the results of Section IV.

We now calculate the change in energy for a given particle as its field line is
displaced from I to II. Using (37) and (38), we may write

f Vwy — pBydl = f Vwy — uBidl (39)
where w is the total kinetic energy of the particle. Again, since it is convenient
to compare B; and By, at points connected by a perpendicular to the field lines,

we introduce the magnetic potential f B dl and write

fﬂ"B;—“B"d(andzu) =f‘_/‘”_'BI‘—_B!d<fBIdlI>

We now expand
Wy = W Sw

II I + (40)
By = By + B

and obtain
[ve=uB ,,B<1 + ”w:—"ﬁf)(l - —)dl [vVe=uBa. @

We note that the fact that the turning points of orbits I and II may differ
does not affect the value of the action integral since the integrand vanishes at
the turning point.

We can now solve Eq. (41) for éw (a constant)

éB(2w/B — u) u)
sw V¥ — “ B (42)
f \/ w — uB
We use the result of Eq. (34) and (35),
1
8B = C T (43)

where C is an irrelevant constant.
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So, dropping constants, we find
f 2w — uB dl
sw RrB '\/ w — pB

f\/w—uB

This result is quite similar to the magnetohydrodynamic one. As in the latter
case, the regions near the field maximum contribute to stability. In the present
formula, the effect of this stable region is somewhat enhanced due to the square
root in the denominator which becomes small near the turning point. Thus, in
most geometries, particles with turning points near the field maximum will have
stable orbits. In all cases, of course, particles which are reflected near the center
where R is still negative will have unstable orbits. For most conceivable distribu-
tions, the effect of these will predominate, and the whole system is unstable. One
can note that the most energetically favorable situation is for the ‘“‘unstable”
orbits to be concentrated in the crest of the flute, and the “stable’’ orbits in the
trough. Thus one might suppose that a sort of distillation occurs until only
stable orbits remain. So far, an adequate mechanism for this has not been found.

We now sum the above equation over all particle orbits tied to the line in
order to find the total energy change of the plasma

(44)

AEy = f sw(u, W)N (4, w) du dw. (45)

We shall try to evaluate the integral in this expression in more familiar terms.
First we note that the density p(w, u) of particles of a given kind (specified w
and u) at a position [ along the line is proportional to:
1. The number of such particles present per line N(w, u)
2. The fraction of its time which it spends between [ and I + dl

dl dl
”_H — Vw — uB

v|| f\/w——uB

3. The density B of flux lines at [.
If, in addition, we use the fact 2w — uB = 2wy + w., we can rewrite Eq. (45)
in the form

8B, ~ [ dt [ duaw?® Wity + w,] (46)

Note that, in this expression, the parallel and perpendicular kinetic energies
enter with just the ratio already seen in Eq. (21), Section II1I. We now see what
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sort of average has to be taken of the two forces which drive the instability: the
centrifugal force 2w;/R, and the force wi/R on the magnetic moment due to the
gradient of B in the perpendicular direction. The type of average in Eq. (46) is
such as to decide whether the net drift in angle about the axis of the system is
positive or negative. It may be seen independently that this is the correct aver-
age to take.

We may also express the result (46) in terms of the pressure tensor

n = fdu dw p(k, w)w

(47)
p, = (1%) fdu dw p(u, w)w,
with these definitions, we may finally write
o~ Y4l + P.
AEr f dl = (48)
and our stability criterion becomes

pH + P,

[aPitrs, (49)

It will be observed that, if we make the approximation of magnetohydro-
dynamics that p; = p. = constant along a line, this reduces to the result of the
previous section, Eq. (36). Thus (49), in general, again appears to predict in-
stability, although it is often possible to construct certain orbit distributions
which are stable.

VI. NONLINEAR EFFECTS ON THE FLUTE GROWTH

In this section, we examine two nonlinear effects on the growth of the flutes.
The first of these is the effect of the component of the electric field (due to charge
separation) parallel to the magnetic field. The importance of considering this
field was pointed out by K. Watson.

We shall think in terms of the configuration illustrated in Fig. 6. The parallel
part of the electric field will try to pull the charged particles out of the system
along the B lines, but will be opposed by the parallel force on the magnetic mo-
ment, Eq. (8). When the electric field becomes large enough, it can pull the
charges out of the system. This happens when the potential of the electric field
is equal to the potential energy of the magnetic moment, w. . As an estimate

eEA =~ mv)} (50)

where E is the electric field of the separated charge, X is the flute wavelength,
and v, is the Larmor velocity. When E. reaches a value determined from Eq.
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(50), additional charges will be drained off, and E, will remain constant. The
flute amplitude will then grow at a rate limited by

2
E. _mv'c _r

aSCFNW—XUI (51)

where r is the Larmor radius. It is reasonable to suppose that the smallest per-
missible wavelength is about equal to the Larmor radius. Thus the flute growth
rate is capable of attaining the full particle velocity, and the parallel fields do
not really impede the small wavelength instabilities.

There is, however, another effect which limits the flute growth rate, namely,
that when the amplitude exceeds the wavelength the linear theory no longer
applies, and the growth rate is diminished. This is very similar to the situation
in Taylor instability, where Taylor has shown, for example, that a bubble rises
through a liquid eventually with constant velocity (even in the absence of vis-
cous forces). The rate of rise, which is analogous to the flute growth rate, is

i~ Vgx (52)

where ¢ is the gravitational acceleration.

We shall show that the flute problem is identical to the hydrodynamic one,
so that Taylor’s result (52) can be carried over. Figure 8 shows the bubble in a
rising frame of reference in which the flow is assumed stationary. Shaded regions
represent plasma, and B is out of the paper and constant (low 8). Only one wave-
length is shown, but the configuration is assumed to repeat to the left and right.

”+ charge %‘ g

Fia. 8. The large-amplitude limit of the gravitational instability.
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The gravitation drift

Mcg X B

causes charges to appear on the surface of the plasma. This charge, together with
the uniform upward motion of our coordinate system across the B field, produces
an electric field, as illustrated in Fig. 8. The electric field then causes the plasma
to flow with the velocity

=c E%ﬁ (54)
Since, in our coordinate system, conditions are assumed stationary, we may put
E = —-vVe¢. (55)
In the interior of the plasma, then
V' = 0.

Let x be the harmonic function conjugate to the harmonic function ¢; then
according to (54)

c

and
Vev =0 = V¥ (57)

These are the equations of incompressible potential flow with velocity potential x.
We still have to examine the boundary condition. The surface charge density

o is zero at the upper most point of the bubble, and changes along the surface,

according to Eq. (53), at the rate (s is distance measured along the surface)

Mc
B

where 6 is the angle the surface makes with the y direction. Since v must be
parallel to the surface, E must be perpendicular to the surface, and

¢E _NM NMc

v 9 o = Nev, cosf =

o g cos @ (58)

o=~ BzE= 5 0 (59)
Putting this result in Eq. (58), we find
2
:_s %— = g cos 0
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or

a (v
3s §+gy =0. (60)

This is the Bernoulli equation expressing the constancy of pressure over the sur-
face. The equivalence of the plasma problem and the hydrodynamic one is,
therefore, complete, and we may use the result (52).
For our problem, the effective gravitational acceleration is
g =v'/R

where R is the radius of curvature of the field lines. Thus we get a limit on 4

= /‘/; (61)

Presumably the most dangerous X will be that for which Eqs. (51) and (61) give
the same d, namely

x = Rl/37213
for which
i < vy(r/R)"* (62)

Since r must be fairly small compared to R, we may expect that the maximum
growth rate will be somewhat smaller than the Larmor (thermal) velocity.

Receiven: February 7, 1957
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NUCLEAR FUSION: 1962 SUPPLEMENT, PART 1

FINITE LARMOR RADIUS STABILIZATION OF “WEAKLY” UNSTABLE

CONFINED PLASMAS*
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It is well known that the ‘“modified” magnetohydrodynamic equations of motion follow from
the exact plasma kinetic theory in the limit of small Larmor radius and low frequency, so that
a magnetohydrodynamic prediction of instability is usually valid. However, in weakly unstable
systems such as mirror machines, slowly rotating plasmas, large aspect ratio torii, etc., the ex-
pansion is no longer correct since the growth rate is very small, i.e., (ka;)* may become com-
parable to »/®2; so that » must also be considered a small quantity. Here £ is the ion cyclotron
frequency, a; the ion gyro-radius and k the wave number of the perturbation. We have studied
several such cases—a plasma under gravity, a mirror machine, and a slowly rotating plasma.
In all these cases the characteristic flute type instability is effectively stabilized if (ka;) > on /R
where wg is the growth rate predicted by the hydrodynamic theory. It should be noted that
present mirror experiments and fast-compression experiments are operating in the region (a;/r)?
~ wy/2; and some detailed discussion of these cases will be made.

The dominant physical effect is the breakdown of the condition that ions and electrons move
together across the magnetic field with characteristic velocity v=c3E x B/B2, where 3E is
the perturbed electric field. Due to the finite ion Larmor radius the mean electric field seen by
the ions is slightly different from the electrons so that their velocity across the field is different.
This builds up a charge separation out of phase with the characteristic charge separation due
to particle drifts which drive the flute type instability. If the above inequality is satisfied, the

result is a stable oscillation.

1. Introduetion

It is well known that the “modified”” magnetohydro-
dynamic equations [1] of motion follow from the exact
plasma kinetic theory in the limit of small Larmor
radius and low frequency, so that a magnetohydro-
dynamic prediction of instability is usually valid.
However, in weakly unstable systems such as mirror
machines, slowly rotating plasmas, large aspect ratio
torii, etc., the expansion is no longer correct since the
growth rate w is very small, i.e., (ka;)? may become
comparable to w/£; so that o must also be considered
a small quantity and terms (ka;)? 2i/w must be re-
tained. Here £2; is the ion cyclotron frequency, a;
the ion gyro-radius, and k the wave number of the
perturbation. We have studied several such cases—a
plasma under gravity, a mirror machine, and a slowly
rotating plasma. In all these cases the characteristic
flute type instability [2] is effectively stabilized if
(kai)?> wg/2; where wy is the growth rate predicted
by the hydrodynamic theory. It should be noted that
present mirror experiments [3] and fast-compression
experiments [4] are operating in the region (ai/r)?
~ wn/$2; and some detailed discussions of these cases
will be made.

The dominant physical effect is the breakdown of
the condition that ions and electrons move together
across the magnetic field with characteristic velocity

v=c3E x B/B?, where 3E is the perturbed electric
field. Due to the finite ion Larmor radius the mean
electric field seen by the ions is slightly different from
the electrons so that their velocity across the field is
different. This builds up a charge separation out of
phase with the characteristic charge separation due
to particle drifts [2] which drives the flute type instabil-
ity. If the above inequality is satisfied, the result is a
stable oscillation.

This may be estimated as follows. Particles move
across the field with velocity v=c¢3E x B/ B2. However,
the electric field which should be used here is the mean
electric field seen by the particle in its gyration. In
particular, there is a difference between ion and electron
velocity. Thus there is a separation current given
roughly by jr=a;?(V23E X B) nsec)B2. This is to
be compared with the current which drives the insta-
bility in the hydrodynamic theory [2]. This current
is equal to ju=vpedn where vp is the equilibrium
drift due to the destabilizing force, e.g., the gravita-
tional drift gxB/©2B; and 3n is the perturbed
number density due to the hydrodynamic motion
dn = — (cfiw) (8E X B/B?%).Vn,. Recalling that
wr=1[g|Vn,|/n,]/>we see that jr becomes comparable
to ju if (ka))2~ (UH/QL

In the following sections we study several situations
of this kind. In all of these cases we treat the small
amplitude stability problem by means of a self-

* Conference paper CN-10/170, presented by M. N. Rosenbluth. Discussion of this paper is given on page 208. Trans-
lations of the abstract are at the end of this volume of the Conference Proceedings.

** General Atomic and the University of California, La Jolla, California. United States of America.
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consistent solution of Maxwell’s equation and the
collisionless Boltzmann (Vlasov) equation, making
use of an expansion which assumes (ka;j)<l; w/Q;
~ (ka;)?. These cases are further simplified by the
assumption of low f (ratio of particle pressure to
magnetic pressure); and by the fact that the equilib-
rium magnetic field is taken constant (to order f)
with no shear or curvature. Other weakly unstable
situations such as surface instabilities in pinches
[5, 6] are not discussed in this paper although again
important deviations from hydrodynamics will occur.

In Section 2 the gravitational instability problem
is studied in detail. We discover that indeed the
situation becomes almost stable for (kai)?> wu/$;.
There remains however a small residual instability
of the Landau growth [7] type due to a resonant
transfer with electrons drifting at the phase velocity
of the wave.

In Section 3 the stability of a rotating cylindrical
plasma is considered. Again the separation between
ions and electrons is found to stabilize the motion. In
this case the above condition leads to the stability
requirement that the macroscopic rotation be not
much greater than the rotation associated with the
ion diamagnetic current. We also model the (unob-
served!) flute instability caused by field line curvature
by means of a radially outwards gravitational force.
In this case we find the possibility of stabilizing all
modes except one, a mode characterized by a constant
electric field which it may be possible to stabilize by
an external conductor.

2. Plasmas with plane geometry

The non-uniform plasma considered here is acted
on by a magnetic field B= Byi: (1 + ¢x), and a gravita-
tional force gmix. The equilibrium distribution function
fo must satisfy the collisionless Boltzmann (Vlasov)
equation and Maxwell’s equations

vxB

a/+v Vf + e[ +4g|x] V.f=0

Yo —0; VB =21 25N [vjodiy
i

ot
Q=Ze;f/o,-d3v=0.
J

Here j refers to particle species and is to be summed
over values i and e for jons and electrons.

fo can be constructed from the constants of the
motion : tmjv?—mjgz, x + (vy/$2j). We choose a simple

function
£13/2 2a:gx
T Y

where we have defined Q;=¢; B/mjc. The parameter
oj is clearly (vthermal)™? and is related to a; by
aj=1/0j4/%;. The parameter ¢ is related to the

144

1)

(2.2)
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magnetic field gradient through the second and third
of Egs. (2.1), which give

1dn _ — 20 g=¢i'—20tig; & 132~-—an-[°",
e —LXeJ=Ei — Ui ; 41—‘112‘1}‘ ]
J

(2.3)

n dr

Thus ¢'/¢ is related to f, the ratio of particle pressure
to magnetic field pressure, and in the cases we shall
consider here the condition ¢ >¢ obtains. Equation
(2.2) thus describes an equilibrium slightly non-uni-
form plasma. We now examine the stability of this
equilibrium in the presence of small perturbations.
In the magnetohydrodynamic limit this equilibrium
is unstable with growth rate Vge .

We write f=f,+8f, and use the Boltzmann
Eq. (2.1) to obtain
as; [va + *~glx] V.8
3B
=—%[sn E—-] Volor (24)

where we have neglected non-linear terms such as
3E-V.8f. We can formally solve this equation by
introducing the parameter ¢, and defining the trans-
formation t', x, v—>¢, X' (t), v’ (t) by

r=t, DX v, W =i (1+ex) +gh.

dt
(2.5)
We observe that these equations describe orbits of
charged particles moving in the unperturbed force

fields F=(e/c) vX B+mgi.. In terms of the trans-
formation (2.5), the Boltzmann equation becomes

_;[ SE+ ¥ ] Vel (2.6)

and choosing the boundary conditions x’ (t=0)=x,
v (t=0)=v we have

A sy, ‘X 3B
378/(55,0,“——“ P

8/(x,v,t=0)=—72~j3dt [SE +V—Xi'i] Vo fo. (27)

We now assume that all perturbed quantities have
time-space dependence ei®’g(x). This procedure will
yield the same results as the rigorous procedure using
Laplace transforms if we assume that o has a small
negative imaginary part, such that at t=-—oo, 3f
vanishes. Combining Eq. (2.7) with Maxwell's equation
then gives a dispersion relation for w. We assume
that the perturbation is associated only with a longi-
tudinal electrostatic field 3E = —V . In fact, of course,
the longitudinal waves are coupled to the transverse
waves. The coupling can be shown to be small for
small values of f=particle pressure/magnetic field
pressure, and our approximation is valid only in that
limit. This decoupling must occur for unstable waves.
since a transverse electric field would lead to a modi-
fication of the magnetic field and an increase of field
energy which in the low f limit would exceed the
change in particle energy. In a separate paper we
explicitly examine transverse modes and demonstrate
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that the present results are indeed valid for small g.
Our dispersion relation is then

VY= 461 Ze;jS/jdnv
- Z%fd“vfdt{V?’(x',t) Vo fo(x,0)} . (2.8)

The lowest order solutions to the orbit equations (2.5)
are

vy= v, 8in (0 —Q¢) +vp

y= %‘cos (B—Qt)—%cosﬂ+vpt
(2.9)
1 ev,?
oL

=1 9
D=y 3]

d vy _ d o _
d—t(x+ !—)) =g (v*—2g2)=0,

with similar expressions for z, vy, and v.. We have
explicitly indicated two constants of the motion allowed
by the orbit equation, z+ (v,/Q2) and (v2—2 gz).
Thus f, (z', v') =fy (x, v), and e~ W) eZazx
— e —w? g2agx,

An interesting and important feature of these orbits
is the drift velocity vp. which has two parts, the ev2/2 Q
field gradient drift, and the —g/Q gravitational drift.
Since V|B| and g are both vectors pointing in the
z-direction and B is in the z-direction, both of those
drifts are in the y-direction. These particle drifts
represent a possible source of instability [2], causing
a pile-up of space charge along the instability flutes.
With this in mind we solve Eq. (2.8) for W eiw! +iky,
For k>¢' the x dependence of the perturbation is
weak and may be neglected [8]. In the next Section
we retain the complete space dependence.

With the simplifications, using the explicit orbits
of Eq. (2.9), the integrals in Eq. (2.8) can be evaluated.
Thus

PR
Vo foj=— 204 ¥ fo; — %(1{) noje-%W- 2631,
7l ™
We note that
vovw= inw i, vP=iky,

where d/d¢ means total derivative along the particle
orbit. Noting that f, and v>— 2gz are constants of the
motion, we may write the time integral in Eq. (2.8)
in the form

0
fdtV‘P-V.,/o=—2aj/oW

—oo

0
+i{2ajw—— f%‘}fo fdte“'(y'— P tior

This expression neglects a small term of order ¢'2
which may easily be shown to vanish in a subsequent
integration.

10

RoseEnBLuTH, KRALL, AND ROSTOKER

FINITE LARMOR RADIUS STABILIZATION

Using Eq. (2.9) we have

eik(y— ¥ — exp {ik [lil_z__. i]t}

2 Q (]
ka_
205
I,m

The integration over the azimuthal velocity space
angle, 0, t, and v; is now easily done to give the dis-
persion relation:

)Jm (%)ei(l —mRi2gi(l - mog ~il2t,

— k= 2, 2 L %e
k Snen(M+m

> 7% 20w, do, [2aj0— (kej/ D)) (kv (D)
- (0 +192;+ kvp) '
I

(2.10)

In obtaining Eq. (2.10) we have set =0 in expres-
sions like e22£*, consistent with setting ¥=ei®!+iky,
It is obvious that all the terms in the sum over
Bessel functions may be ignored except the I=0
terms, higher terms being smaller by a factor
(kai)¥ w/$25)2< 1. We reiterate that our calculation
assumes ka;, £'a; <1, as in the magnetohydrodynamic
limit, and that the importance of higher orders in ka;
arises not from large values of ka; but from extremely
small values of the parameter w/Q for ‘‘weakly
unstable” situations. In particular, in Eq. (2.10) we
treat ke'/(2; as of the same order as 2ajw.

Expanding the Bessel function and neglecting the
Debye length compared to Larmor radius, we have:

0=F(w) = 22%
j

_Z(2a'w_ﬁ’_)_l_we-"[l—(k’x/2u,'9,"])dx
d 4 Q mjo w—(kg/Q)+ (kex/24j Q) °
J

(.11)

The singularities of the integral are to be inter-
preted in the usual way, passing to the limit as
has a small negative imaginary part [7]. To study the
stability of the system we must determine whether
there exist solutions w of Eq.(2.11) with negative
imaginary part. This question can be systematically
answered by studying the behavior of F (w) in the
complex plane as w goes from —oo to +oo along the
real axis, the number of unstable roots being given
by the number of times the origin is encircled by the
curve F(w). We omit the details and give only the
result—if the density decreases in the direction of
gravity, i.e., ¢ >2xg >0, there is one unstable root.
We will subsequently find this root by approximate
means.

As we are primarily concerned with the case of
low B, i.e., ¢'/e > 1, we disregard the last term in
the denominator of Eq. (2.11) except for the imaginary
part which arises from the singularity of the integral.
This small term will eventually yield a slow Landau
damping or growth of our solutions.
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The integrals may now be performed to give

)
J (2.12)
where ) vl
7= Eomtar o [~ (0 Eaa)

or y;=0 depending on whether the exponent is nega-
tive or positive. Equation (2.12) may now easily be
reduced to a quadratic and solved. First we neglect
the small terms v;, and terms of order me/m;. Using
Eq. (2.3) we find

’ ) 1
o )+ ) —aoe] ] e

This is to be compared with the hydrodynamic

result wg=+iVge . We see that now the system
is “stable” if

ke’
R

or
(kay) (¢ as) > i}"f . (2.14)
Thus we see that for weakly unstable systems the
hydrodynamic approximation may break down even
for kaj< 1. It is interesting to note that the larger
the density gradient, the more stable the systems.
This may possibly be relevant in relation to the van
Allen radiation belts. We also note that the condition
(Eq. (2.14)) is considerably more favorable to stability
than the requirement that the growth period be short
compared to the time required to drift a wavelength.
Finally we return to Eq. (2.12) to examine the effect
of the small imaginary terms in the dispersion relation.
It is easily seen that only the electron terms contribute
in the neighborhood of the roots (Eq. (2.13)) and that
the negative sign in Eq. (2.13) yields the unstable root.
In the “stable” limit ke'/20:2i> 2 wa we have for
the exponential dependence of the growth rate
Im () oce ~ *@k % %% 1%l

. aaa  (2.15)
oc 6~ BIA) (TyTe)ayie Map

Thus at wavelengths comparable to the ion Larmor
radius and for moderate § even this overstability may
lead to sizable growth although it is not clear how
seriously to take this in view of our assumptions f,
kai< 1. For example, we might require for all wave-
lengths for which our -calculation is valid, ie.;
1/ay>k>¢', that the system be stable in the sense
of satisfying Eq. (2.14) and having the exponent in
Eq. (2.15) greater than 8. This effective stability

condition is
e ap\2 ag Te
( 1 ) > = > T, -

3. Confined plasma with ecylindrical symmetry

In this Section we study the stability of a cylindricel
plasma confined by a longitudinal magnetic field.
Taking advantage of the results of the preceding Sec-
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tion, we are able to neglect the small drifts due to
magnetic field gradients and expand the denominators
which occur in the various integrals over the particle
distribution function. On the other hand, in this
Section we will do the calculation self-consistently,
taking properly into account the radial dependence of
the disturbances rather than assuming a localized
perturbation.

The first problem we treat is that of a uniformly
rotating plasma. It is easy to show in the magneto-
hydrodynamic approximation that such a plasma is
unstable to long-wave length perturbations with a
growth rate equal to Vm—1 W, where m is the
azimuthal wave number and W the angular velocity.
From the microscopic viewpoint the rotation of the
plasma may be split into two parts, that associated
with the diamagnetic current and that produced by
a radial electric field. The diamagnetic current is
carried by an azimuthal velocity of the particles
equal to their mean velocity multiplied by the ratio
of the Larmor radius to plasma radius. Hence
W atamagnetio=(@1/7)22;. We see that the growth
rate associated with the diamagnetic rotation is just
such as to fall within our definition of weak instability.
Thus the hydromagnetic approximation is inadequate
for discussing the possible rotational instability asso-
ciated with plasma diamagnetism. We proceed to
calculate the stability of such a diamagnetic plasma
allowing also for an electric field induced rotation of the
same order as the diamagnetic rotation. In what
follows we treat w/Q;, W/Qi~ O (ay/r)2.

The plasma is assumed to be infinite in the
z-direction. All perturbations are proportional to
exp i (wt+ kz+me); the present calculations will how-
ever be restricted to perturbations for which k=0.
A further restriction to be imposed is that the plasma
density is so low that the particles are unable to per-
turb the magnetic field. In addition to the usual
expansion parameters of the modified magnetohydro-
dynamic approximation [1], =8 n P/B? where P
is the plasma pressure will be considered to be a small
quantity and calculations will be carried out to the
lowest order in f§; i.e., in the limit §—0. In this limit
we can take the unperturbed magnetic field B to be
constant and in the z-direction. Moreover, since the
perturbed magnetic field 3B=0 in this limit, the
perturbed electric field sE=V3Y¥ is the gradient of a
potential.

3.1. STATIONARY STATE OF THE PLASMA

The initial distribution function f;(x, v) satisfies
the Vlasov equation
of A 1 ofi _
?t—+v-V/,+ mj(E+?v><B)~W_O, (3.1)
where B=[0, 0, B]and B is constant. E= — (W Bj/c)
[z, y, 0] is a radial electric field; W is the constant
angular velocity of guiding centers which is assumed
to be a small quantity such that W[Q;=0 (aj/r,)?
where Q;=e; B/mjc is the Larmor frequency and a;
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is the mean Larmor radius for particles of species j;
7o is the radius of the plasma.
The unperturbed orbit equations are

&=—0;[Wz—y]

§=—0(Wy + 4] 3-2)

:=0,

where #=dz/dt=vx etc. The constants of the motion
are the energy

b= g 02+ QWrY), (33)
and the canonical angular momentum
Lj = mj (avy—yx) + 214, (3.4)

A,=Br[2 is the vector potential of the magnetic
field and r2=22%+ y2.

The solution of Eq. (3.1) is an arbitrary function of
the constants of the motion ¢ and L;. A specific
function will be assumed of the form
& +0)ij)

mjvt |’

A .
filx,v) = W{ﬁ exp (— (3.5)

The particle density n; (r)=f/,<dv must be independ-
ent of species in the sense that dn/n < (aj/ry)?, since
we are looking for effects of this order.

As it is also true that 3n/n~ (Lp/ry)? where Lp is
the Debye length, we must require the Debye length
to be much less than the ion Larmor radius or

2
1>4> 4. (3.6)
After integrating Eq. (3.5) over velocity space the
following result is obtained for particle density

n(r) =

N r\2
e exp—(—;;) , 3.7)

where N =mnr,24; is the number of particles per unit

length and A4; is independent of species. The radius
of the plasma is r, where

a1t
2 2

{9 (W + o) — .
This determines the parameter w; as
2 4
wj = - {l —Vl - (Wi —W) }
—W—Wt L (W, —wyst o(ﬂ)3 (3.8)
=W, aq W ) .

In this equation @=v;/Q2; and W;=2 (afry)L2;
Eq. (3.53) can be expressed as

fi(x,v)= (7:7(,%;7;

2
€xp {_[ 202

This provides a complete description of the stationary
state to be considered.

+ % (xvy, —yovx) + 32’—:]} (3.9)

2
Y

10*
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We note that W is the angular frequency associated
with the motion of the particles carrying the plasma
diamagnetic current. It provides a natural unit of
angular frequency and we are interested in studying
cases where W/W~ 1.

3.2. SOLUTION OF THE UNPERTURBED ORBIT EQUATIONS

With the substitution é=z+ iy, Egs. (3.2) simplify
to

E+iQié+Qwe=0

(3.10)
£=0.
The solution is
E(t) — aeiwal +beiwbl
. (3.11)
g =10z,
where
oo BEVITESEE (W
]

w W2
-—aft+ o —(5) )}
Wa 1{ + 2; 2 }
The complex constants @ and b can be identified by
the initial conditions

EO0)=rei?=a+b
: . (3.12)
£(0) =v, el = i[wia + wsb].

The solution may be expressed as
Ee——iwbr= b+aei(""'_""’)',

Since b7, a=v,/Qj, wpy=W and wi—wp=—0,
the unperturbed orbit consists approximately of a
conventional Larmor orbit about a guiding center
a distance |b| from the origin which rotates with
angular velocity W.

3.3. LINEARIZED STABILITY ANALYSIS

The linearized Vlasov equation is
2 5y 2 sy L & 1 o o
Ty ¥+ 7J_(E+ Ly x B)~WS/,

[
=—7”’;(8E +Lvx SB)A /BT
We consider only the limit 80 in which case 3B —0
and 3E=V 3. Perturbations will be considered of the
form ¥ =W (r) exp i (wt+me).
The first step is to integrate Eq.(3.13) along the
unperturbed orbits:

1

8= — -e';j_ L dt’(SE . g’vi) )

m,
Making nse of Eq. (3.9) for f;
a . .
(sn. ai;) =—% (v VOV + wj(z8 BEy—y S E,)} .
f; is a function of the constants of the motion of
the unperturbed orbits and as such can be taken
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outside the integral. (d/dt) ¥ =iwd¥ +v-V3Y¥ and
28Ey—ydE,=im 8¥. It is assumed that w has a
small negative imaginary part* so that 8% (— oo0)=0.
With these substitutions, and making use of Egq.
(3.11) for & (t), the following result obtains for 3fj,

dfj= ’ expi (ot + me)

mj

{W(V) ——-1(w—mw,)f |§|ED §”'e“’"dt} (3.14)

In order to carry out the indicated time integration
it is necessary to make an expansion in powers of
A=aj[ry. It is assumed that w/$;, W/[02;=0 (1?)
and we consider v, [r{; to be of order A. A Taylor
series is employed for ¥ (/&)), ie.,

[&@)|=r+3r(t) and V(&)

— W)+ ) P () + [8”’)] (...
—rP s T+ @(W’-M/'H EOF gre.

After some algebra we find the general term of the
expansion is of the form

(n*- m’)

&m 5557"" - =exp [im(p+ wbt)]{ -n(W/[Q)+

r 91)

— gy @t v+ (:wy—yvx)}. (3.15)

In deriving (3.15) we have of course only retained
terms of the proper order; (v/r$2)% W/Q;. We
have moreover dropped terms containing factors
exp i (w— ws) t and v,2 —wvy? since they will become
of higher order after subsequent integration.

After carrying out the time integration in Eq.
(3.14) the result is

(m—mj)

8fi= 2f,f)!lp [i (lot + m(p)](?’(r) — o)
A W(” [1— 5, @ost s — 5 (75 ) ]+ 727 )

(=5 - 0T )

r2 T +
(3.16)

It is now possible to calculate the perturbation of
macroscopic variables. For example, the perturbation
of charge density is

So. = ?e, [8fidv=expli (meHZWM

mjvj?

(llf(r “’+$;{¥/(r)[l—m2(ir’)2]

e[ ().

* 8w=lim y(r)expimge exp (iw+y)! means that
y—>

the perturbatxon is switched on adiabatically at ¢ =—oco.
The same procedure obtains if we let p=iw+y be
the Laplace transform variable.
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To complete the expansion procedure substitute w;
from Eq. (3.8) and making use of Eq. (3.11)

1 { mw/Q;
wot+mw,  o+mW w+mW }

After carrying out the indicated multiplication
47cdp. =exp [i(wt +7mp)]z I {ll’[ W;{, + WilWi—2W)

Wae
Wi
‘!W]*[l‘

where w =(w+mW)mW, W;=2 (gjr,)?2; and
1/Lj?=4mn(r)e?/mjv¥. The first term gives zero after
summing because W;/Lj?=8mcn(r)ej/r,2B which is
equal and opposite for electrons and ions. In the
remaining terms the contributions from the ions
dominate so that we can omit the sum and finally
obtain

41:899—(‘“) -——«—l]exp [i (ot + me)]
['P” + ;——-T— ——(rw'—v'{')] (3.18)

511; [54‘2 %'I’——T——Y")+r¥”%]},

where
0@ (W) —2
o — (Wi W)
3y satisfies the differential equation V23y= + 47 3ge.

It has already been assumed that (Lifa;)? <€ A2<1
so that v must satisfy

4 2 2 , Ly\2
v 2y o —p) =0 (2] ~o0.

(3.19)
If the following substitutions are made

1+» m
= (rfr)), p=—5—, 8§ =,

_ Y(=) z
Y= Ve exp 5,

this equation becomes

1/4

. 1 —e
v+ {_I + 2y .T}y=o, (3.20)

which is Whittaker’s equation [9]. The solutions are
Whittaker functions W, ,(x) and W_, (—=z). The
asymptotic form for large |z| is

o i
HST Tl 1)
=1 =1

(3.21)

lim W, (x)=x"e”
|x| = o0

If y—1—s=mn where n is an integer the sum ter-
minates at I=n+2s. The asymptotic form for
from this solution is lim y(r)=rm+2 as r—oco. The
second solution from W_, ,(—=z) diverges like
exp (r/ry)? so that boundary conditions at large r can be
satisfied with the first solution dominating. This is
an eigenvalue problem with the eigenvalues for » or u
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v=2u—1=m+2n, and therefore
{ rv—1+14 V[ (v—l)+l]—v}
(3.22)

where we have made use of Eq. (3.18). If =0,
w=2W—Wj for m=0, and w=0 for m=1. For
»>1 the condition for stability is

1+\/y 1—y/7

LA

Wi 2
A symmetric form of this criterion is obtained by
noting that the macroscopic velocity V, in the
initial state is given by

om Vo= Z%fﬁ (xoy—yox) dv
i

( W1+ 1) >v, or . (3.23)

so that .
Ve=r(W—W;), (3.24)
and the stability criterion for m>1 is
NG 1 |V, V7
AR 2w( +W) 7 (3.20)

Thus we see that the rotation associated with the
plasma diamagnetic currents is not sufficient to
induce instability by itself. However, if the rotation
produced by a radial electric field exceeds this natural
rotation by an appreciable factor, then the hydro-
dynamic instability occurs.

3.4. APPLICATION TO THE FAST B-COMPRESSION
(ScyLra)

It has been observed [4] that the plasma formed
in a fast B-compression develops an m=2 instability
after a quiescent period of about 5 ps. If the radial
displacement is proportional to exp i [wt+mp + kz]
and only the m=2 mode grows, the plasma should
appear to fission into two parts which have an appar-
ent rotational frequency of dp/dt=—Rew/2. This is in
fact observed and direct measurements from streak
camera photographs give Rew/2=107s"1. The observed
rotation is in the same sense as ion orbits in the
external field.

On the basis of Kolb’s measurements of ion tem-
perature (@;=2 keV), plasma radius (r,=0.8 cm)
and magnetic field (B=50 kG) we can estimate
Wi=2(a;/ro)?0i=< 1 x 10851, For an m =2 instability,
Eq. (3.22) gives

Rew=—(W—lg_l):2>< 107571,
from which we deduce that W/W;=—0.3. The
stability predictions of the previous analysis are that
m=0, 1 should be stable and from Eq. (3.23) the
stability limits are

1.207 > ——:—:;— > —0.207 for m=2,
i

1.366 > —%— > — 0.366 for m=3.
i
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The experimental value of W/W;j= —0.3 is in agree-
ment with the observed fact that only the m=2
mode is unstable, although the quantitative agree-
ment with theory is not to be taken seriously in view
of the idealized theory and experimental inaccuracies.
In another paper [4] it has been shown that the
redistribution of currents associated with the decay
of trapped magnetic field should produce rotations
W|Wi~1 and hence lead to m=2 instabilities.

3.5. APPLICATION TO MIRROR MACHINES

The geometry of a mirror machine makes an exact
treatment of stability somewhat unpleasant. The
present calculations for an infinite cylinder may be
adapted to the mirror machine if we include the
essential feature of the curvature of the field lines.
It is well known [2] that the effect is similar to that
of a gravitational field and produces flute instabilities
with a growth rate of the order of V'mgjr, where
the effective gravitational constant is g~ v;%/ R, where
R is the average radius of curvature of the field lines
and vy is the thermal speed of the ions. For sufficiently
large

R ~ rdfa:?, (3.26)
the instability is weak and V/gko/Qi~ (ai/r,)? so that
the magnetohydrodynamic approximation breaks
down. This case is of some practical significance since
in most experiments aj/r, is not very large and
ro/ R€1 and can be treated by a slight extension
of the present calculations.

In order to take account of the fact that the curva-
ture of the field lines increases with r we assume
an equivalent gravitational force of the form

[mi vit T miv® Y 0]

R 1’ R 7’ '
The unperturbed equations of motion are then the
same as Eq. (3.2) if we simply replace W by W; =
—uv?/QiryR. The entire previous analysis can be
carried through except that the final expansion pro-
duces an additional term. Eq. (3.14) is obtained with
the new definition of »:

{_im_ (” Wfi:‘,R)"' % "2}

v= W . (327)
or
vw——(v 1)+1:EV[W‘ -1 +1]"-5[1 +Wf£ﬁ],

where the eigenvalues for v are y=m + 2n as before.
The effects of rotation W are much the same here
as in the previous section so we specialize to the
case of no initial rotation, W=0, and find for the
most unstable mode, m=1,

(3.28)
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If ﬁn_ite Larmor radius effects had been omitted,
i.e., W;=0, the result would have been

Now, however, we can obtain stability if

WE(1—v)>dvoijroR or if Y7L |7 <2 (3.99)

and y>1.

For y=0 w=0, — W, which is stable, but for y=1
w?= — v#/r,R so that this mode is still unstable.

The reason that the mode y=m=1 is unaffected
by these finite Larmor radius corrections is easily
understood in terms of the physical model given in
Section 1. This mode corresponds to ¥=rei? so
the electric field is a constant independent of position.
The physical origin of the stabilizing effect is that
the electric field, and hence the electric drift, are
different for electrons and ions due to being averaged
over the Larmor orbit. For a constant electric field
this mechanism is obviously ineffective. However, this
mode may perhaps be stabilized by an external
conductor. For example, if the parameters are such
that by Eq. (3.29) the mode m =2 is just stable, then
the external conductor at radius r/ry=1.7 will also
stabilize m=1, as may be seen from the expansion
of the Whittaker factors (Eq. 3.20). Since in practice
one would of course have to place the conductor
completely outside the plasma and as our theory
does not apply within a Larmor radius of the surface,
it is not clear whether this method of stabilization is
feasible.

We have attempted to compare the stability
criterion (Eq. 3.29) with the conditions in Coensgen'’s
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successful high temperature ion confinement experi-
ment [3]. The data is not sufficiently accurate, nor
the theory sufficiently refined to allow a comparison
for low m [2, 3] but the stability criterion is certainly
well satisfied for higher m values.

Work is in progress on another situation in which
strong stabilizing effects are to be anticipated—the
surface instabilities [5] such as are encountered in
the pinch or stellarator configurations. These are
characterized both by low growth rates and by very
localized disturbances and may be strongly modified
by finite Larmor radius effects.
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When there is a uniform externally imposed

longitudinal magnetic field much larger than the

field of a discharge current in a cylindrical plasma, one should expect instabilities in the form of a

lateral displ t of the pl
under the conditions which might occur in the

column into a helix of large pitch. This problem is examined

stellarator during ohmic heating. It is shown that

the presence of external conductors is unimportant. When effects of the finite length of the machine
are considered, a critical current is obtained below which the system is stable to this displacement.
Consideration of current distributions other than uniform shows that instabilities which vary as

e (m0+ks) can occur for values of m greater than

one, so that instabilities can be found for any finite

length machine. Experimental results are in agreement with the theory for the m = 1 mode. There
is no experimental indication of the higher m modes, for which several possible explanations are

suggested.

I. INTRODUCTION

RUSKAL and Tuck' (in a paper hereafter
referred to as KT) have examined the influence
of a longitudinal magnetic field on the instabilities
of the pinch effect. The pinch effect is the confine-
ment of a thin column of plasma by means of the
magnetic field due to a high-current discharge along
the column. Instabilities in the form of lateral
“buckling” of the column (in the absence of a
longitudinal field) have been predicted theoretically”
and are well known experimentally.

In KT it was noted that when there is a uniform
externally imposed longitudinal field much larger
than the field of the discharge current, one should
expect instabilities in the form of a lateral dis-
placement of the plasma column into a helix of
large pitch. At the wavelength of fastest growth
the e-folding time approximates the time it takes a
sound wave in the plasma to traverse the radius of
the plasma column. In Sec. II we re-examine this
problem under the conditions which might be
expected to occur in the stellarator during ohmic
heating, including the presence of external con-
ductors. In Sec. III we apply this theory to the
stellarator and in Sec. IV show that the external
conductors are in fact unimportant. In Sec. V we
discuss the important effects due to the finite length
of the machine, and in Sec. VI the effects of more

upported by the U. S. Atomic Energy Commission
under ontract AT(31-1)-1238 with Princeton University.
loan from Westinghouse Electric Corporation.
1 Now at General Electric Company, Schenectady,
New York.
1 M. D. Kruskal and J. L. Tuck, Proc. Roy. Soc. (London)
A245 222 (1958).
* M. D. Kruskal and M. Schwarzschild, Proc. Roy. Soc.
(London) A223, 348 (1954).
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general current distributions. Finally, in Sec. VII
we give the relevant experimental results.

It should be emphasized that the considerations
of this paper apply only to stellarators in which the
rotational transform® results from the large scale
geometry of the tube (such as a figure eight shape)
rather than from small local perturbation -coils
(such as helical windings). It is perhaps worth
noting that the theoretical results of Seecs. II
through V are given in less condensed form else-
where'; the appearance of instability and the
dependence of the critical current, both on the con-
fining field and on the direction of the plasma
current, were predicted in this earlier work well in
advance of the experimental confirmation.

II. INFINITE CYLINDER THEORY

We start with the analysis of pinch instability
under the conditions considered in KT, but now
additionally taking into account the effect of a thin
cylindrical sheet conductor coaxial with the plasma.
The notations used in KT are redefined for the
reader’s convenience.

The material pressure, density, and velocity of
the plasma are denoted by p, p, and v, the magnetic
and electric fields by B and E, the current and
charge densities by j and ¢ the permeability and
permittivity of space by u, and «x,, and the ratio
of specific heats by y. (We employ mks units
throughout.) The equations we use for the interior
of the plasma (treated as infinitely conductive) are
Eqgs. (1) through (8) of KT.

3 L. Spitzer, Jr., Phys. Fluids 1, 253 (1958).
M. D. Krusk al, U. S. Atomic Energy Commission
Report No. NYO-6045 (PM-S-12) (1954).
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At an interface between plasma and vacuum, n
denotes the unit normal to the surface directed into
the plasma, u the normal velocity of the surface,
j* and €* the surface current density and surface
charge density, brackets the jump in the enclosed
quantity upon crossing the surface from the vacuum
into the plasma, a bar under a quantity the arithme-
tic mean of the values of that quantity on each side
of the surface, and p and v their values in the plasma
just inside the surface. The equations we use at the
interface are Eqs. (9) through (14) of KT.

Suppose we have a sheet of solid material of
small thickness & fixed in space with vacuum on
both sides. Let o be the volume conductivity of the
material and 7 a characteristic time for the phe-
nomena to be considered. If § is much less than the
penetration distance (r/ueo)! of the material, the
thickness may be disregarded and the sheet treated
as a surface of surface conductivity ¢* = ¢b. With
the same notation as at an interface, our equations
at the sheet are then

n X [B] = Fﬂj*» (1)
n - [B] =0, @
n X [E] =0, 3)
a - [B]- e )
E-mE=1 ®)

We use cylindrical coordinates r, 8, z. Consider
the following situation (Fig. 1). Inside the infinite
cylinder r = r, we have a uniform plasma with
P=Po»P=PoyV=0,By=Ba=O,B:= B,
E =0,j = 0, e = 0. Outside the cylinder r = r,
is a vacuum in which B, = 0, B, = Byro/r, B, = By,
E = 0. On the cylindrical interface r = r, we have
=0 =7, =% & =0Atr=1r>r
there is a fixed cylindrical thin material sheet of
surface conductivity ¢* on which j* = 0, & = 0.

VACUUM
——

VACUUM

L I o
g g U U A
. A W Wk W W W
N1 / 1 N MAGNETIC
IAYIN] / / IR YA 7 LINES
/! \_/ \ / \ \{ i A i / \ SURFACE
A4 \J \J

NS CURRENTS

UNIFORM
PLASMA
I

SHEET OF CONDUCTIVITYew

7 S
Fic. 1. Equilibrium configuration.
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This will be an equilibrium situation (time-in-
dependent solution) if the constants r,, ri, po, po,
B, Bg, By, j*, j*i, and o* satisfy

By = pojo*, By — By = Ilojl",

Bo2 + sz - Blf'2 = 2poPo.

We now seek solutions of our equations which are
close to the equilibrium solution just described. We
suppose that every physical quantity is equal to its
equilibrium value plus a small perturbation term.
We consider all our equations as equations for these
perturbation quantities and linearize them in the
usual way. We obtain a system of algebraic and
differential equations, linear and homogeneous,
with r, 6, z, and ¢t as independent variables. The
coefficients are obviously independent of 6, 2, and ¢.
Any solution of the equations may therefore be
obtained as a superposition of elementary solutions,
an elementary solution being one in which each
dependent variable is a function of r only (or, in
the case of sheet quantities, a constant) multiplied
by e“*™*#*:+ %0 where m, k, and w are constants, the
characteristic constants of the elementary solution.
We may therefore restrict ourselves to a search for
the elementary solutions. To make physical sense
we must require that m be an integer and that k be
real. Without loss of generality we may assume that
m is nonnegative.

We next change our notation, each symbol which
originally denoted a physical quantity now denoting
the coefficient of the exponential in the represen-
tation of the perturbation of that quantity. Our
equations become linear homogeneous algebraic and
ordinary differential equations for these coefficients.
We introduce the constants

®)

02=L §* = YPo h2=B_"*2
Hoko ' po’ I-lroPo'
£2=k2+‘iz 2=k2+‘£+9j ™
8” n cz hz,

k2 ‘22 w? 2_k2+‘i2.
+82+h2’¢_ c2v

3_2

¢, s, and h are the velocities of light, sound, and
hydromagnetic waves, respectively. The general
regular solution of the equations for the plasma is
given by Egs. (19) of KT in terms of an arbitrary
constant p,. (J . is the mth-order Bessel function of
first kind and J’, its derivative with respect to its
argument; J,, and J’, are here always evaluated for
the argument ir¢n/¢.)

The equations for the vacuum are (4) through (7)
of KT with j = 0 and ¢ = 0. For the region r > r,
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(outside the fixed conductor) the general regular
solution is given by Eqs. (23) of KT in terms of
arbitrary constants B, and E,. (H,, is the mth-order
Hankel function of first kind and H’,, its derivative
with respect to its argument; H,, and H’, are here
always evaluated for the argument yr.)

In the general solution for the vacuum region
ro < r < r, (between the plasma and the fixed
conductor), we have each magnetic and electric
field component given as a sum of two expressions,
one the same as in (23) of KT except for having
B, and E, replaced by new constants B, and E,,
and the other again the same except that B, and E,
are replaced by new constants B; and E; and at the
same time H,, and H’, are replaced by J,, and J',
(both evaluated for the argument 7yr).

We now have the solution everywhere expressed
in terms of the seven so far arbitrary constants p,,
B,, E,, B,, E,, B;, and E;. We obtain relations
between these from the interface and boundary
conditions. From conditions (9) through (14) of
KT we obtain (only) three independent relations
between p,, B,, and E,. Irrom conditions (1) through
(5) we obtain four independent relations between all
the constants except p,. Thus we have seven linear
homogeneous equations for the seven coefficient
constants. The condition that these equations have
a nontrivial solution (i.e., that the determinant of
their coefficients vanishes) leads to the character-
istic equation, which must be satisfied by the
characteristic constants of any elementary solution.

We now make the approximation of infinite light
velocity by taking x, = 0. We are interested only in
unstable solutions, i.e., solutions for which w has a
positive real part, and we assume that o is real. It
can be proved® (at least for o* either zero or infinite)
that this is no restriction, i.e., that all unstable
modes have w real. Introducing the dimensionless
constants and functions

B,. = By
H 2&) ! *
W = (Zp)row, E=(Po)“0¢7, (8)
_ L) _ H)
K =i Y =
_ H'.(y) J'wliye)
M. (yo, y1) H Gyo) T iy

the characteristic equation may be written

s Bernstein, Frieman, Kruskal, and Kulsrud, Proc. Roy.
Soc. (London) A244, 17 (1958).
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lar’ye’ + (1 + av’® — ap) WK ()
=1+ (avyo &= m)*[Ln(yo)
M.a(yo, y»(K,(yo) Lo(yo)
1= Moo, v+t B ”‘ ™ Ky ~La®)
©

where the plus or minus sign is to be chosen according
to whether k is positive or negative, and where

Yo = |k| 1o, ¥ = k|,

= (y02+% WZ) arzyoz+(l+av22—_apz)wz ! .
ap’yo’+(1 +av’+T’ a:)w’

(10)

Numerically, J..(iy) and J’,.(ty) are monotonically
increasing functions of y, and H,(iy) and H’,(iy)
are monotonically decreasing functions of y. Since
Yo < ¥, it follows that 0 < M,,(yo, 1) < 1. Also,
K.(y) > 0 and L,(y) < 0. We thus see that the
second term in the brackets on the right-hand side
of (9), which term we shall denote by U, is negative,
as is the first term L,.(yo). The left-hand side of (9)
is a monotonically increasing function of W, at
least for W very small, for W very large, and for W
in the neighborhood of its largest value satisfying
(9), and very likely for all W. In any case, it can be
proved easily that the largest value of W for which
the left-hand side of (9) has a prescribed value is a
monotonically nondecreasing function of that pre-
scribed value. Now characteristic equation (9)
differs from the corresponding equation for the same
equilibrium situation without the conducting sheet
at r = r, [namely, (30) of KT} only in the presence
of the term U. It follows, therefore, that the presence
of the sheet has quite generally the effect of diminish-
ing the rate of instability.

As was to be expected, U — 0 as £ — 0 or as
r, — . In the latter case U — 0 very quickly since
both H',.(iy,) and 1/J’..(iy,) go to zero exponentially.

As pointed out earlier, Eqs. (1) through (5) are
valid if the thickness of the shell is much less than
the penetration distance (r/ueo)! of the shell
material, 7 being a characteristic time for the
phenomena under consideration. With the shell in
the form of a cylinder of inner radius r, we can,
under rough assumptions determine corresponding
equations for the opposite limiting case when
8 >> (r/uoo)!. We take for granted that (r/po)} <
r;. We do not know a priori the distribution of
induced eddy currents in the shell, but we assume,
for the sake of having something definite to compute,
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that it is purely in the @ direction. This current
distribution turns out to have a characteristic decay
time of about }rr,(r/pe)™¥ > 7. Therefore, there is
no appreciable decay during lengths of time of
interest, and the shell may be treated as a perfectly
conducting sheet, with a radius perhaps exceeding
r. by something of the order of the penetration
distance. Thus, with appropriate values of r, and
o*, Egs. (1) through (5) may still be considered to
hold. The validity of this argument is of course
questionable due to the arbitrariness in the choice
of the current distribution, but in any case the
stabilizing action of the shell must be less than it
would be for a perfect conductor, which can be
treated as a sheet at radius r,.

III. APPLICATION

‘We now wish to apply our theory to the stellarator.
One idealization we make is to ignore the curvature
of the stellarator and to treat it instead as if it were
straightened out to form a right circular cylinder.
Since the stellarator has finite length and the present
theory deals with an infinite cylinder, it is necessary
to impose some periodicity condition. This will be
discussed in Sec. V.

Another idealization is to treat the plasma in the
stellarator as a uniform plasma with all current on
the surface. The effect of modifying this assumption
is discussed in Sec. VI.

The equilibrium situation of the theory would
seem to represent reasonably well the expected
conditions in the stellarator during ohmic heating
if we take B, = By to represent the confining field,
2x7ojo* to represent the induced plasma current,
and the sheet at r = r, to represent any coaxial
cylindrical conductor, such as accelerating or
confining field windings or the stainless steel dis-
charge tube. In the stellarator the longitudinal
confining field is much larger than the maximum
field produced by the plasma current, hence we have
la] > 1, where a = ap = ay. It is shown in KT that
in this limiting case the only instability is for m = 1,
to which case we now confine our investigation. It is
not hard to show that if we are to obtain a real
positive solution W of (9) we must have y, <1 (i.e., &
small), ka < 0, W not too large, and z < 1. Since
K,(0) = 1, L,(0) = —1, and (for small y, and y,)
M, (yo, 1) = 75°/1°, (9) becomes asymptotically

Y2+W2

) 2
=1-(- l)<1 +a’—1+2a/zw)’ (11)
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where
(12)

If 2 is finite, Eq. (11) has a positive real solution
Wonlyfor0 <Y <1;for Y —» 0 wefind W=
2aY/Z, while for ¥ — 1 we find W = [2(1 — Y)]%.
If 2 = o, it has a positive real solution only for
a? <Y <1l;forY = a?®wefind W= [2(Y —
a™®)]}, while for Y — 1 we have W &~ [2(1 — Y)}}
as before. In any case, the maximum value of W
and the value of Y for which it is attained satisfy,
in addition to (11), the equation

Y = |a| yo, a =r/ro.

2
—_——y 2a/EW)' (13)

which is obtained from (11) by partial differentiation
with respect to Y. From (11) and (13) we find that

=1-Ww (14)
and that W is determined by

2Y = —2(Y — 1)(1 +

2 -,_L___) _ 1
W(l+a*—1+2a/zw =3y @

IV. UNIMPORTANCE OF EXTERNAL CONDUCTOR

In the absence of the conducting sheet (i.e., for
a= o orZ = 0)Eq. (15) gives W = 1/v/2or

-4

To \Po
for the maximum rate of instability. In a stellarator
we might have a tube of, say, helium plasma of
about 2 cm radius. If the ions and electrons were

both at temperature T in degrees Kelvin, (16)
would become

w = 3.12 X 10°T* sec™. 17

Since the time scale for operation of the stellarator
is of the order of milliseconds, we see that for
T = 10° the instability would grow extremely fast.
Even for T = 10' an instability would be serious
if its W were larger than 107°.

For the conducting sheet to have the effect of
reducing the maximum W to a very small value, we
see from (15) that it is necessary both for a to be
nearly equal to unity and for = to be large. Specifi-
cally, it is necessary to have

a—1< W,

(16)

> W (18)

For the stellarator, this means that a conducting
shell which is to slow up the instability enough to
do any good must in the first place be extremely
close to the plasma (r, — r, < 2 X 10™° em for
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T = 10%). This immediately excludes all conductors
except those virtually in contact with the plasma,
such as stainless steel tubing. The sheet conductivi-
ties of such conductors are unlikely to exceed several
hundred mhos by much, which at T = 10* corre-
sponds roughly to 2 = 4, whereas Z would have to
be about 10° to do any good ; at higher temperatures
the comparison is even less favorable.

Indeed, it would apparently be hopeless to slow
up the instability sufficiently by external conductors
even if they were designed for that purpose and it
were not necessary to worry about inimical effects
they might have on the normal operation of the
stellarator. For instance, if one had thick walls of
silver (¢ = 6 X 10" mho/meter) arbitrarily close to
the plasma, the silver could be treated as a perfectly
conducting sheet at a radius greater than the plasma
radius r, by approximately the penetration distance
of the silver, and computation shows that, even for
a plasma temperature as low as 0.3°K, the in-
stability would then e-fold in a millisecond.

V. PERIODICITY CONDITION

Now that we have seen that external conductors
have a negligible effect on the instability, we turn
to an examination of the restrictions on perturb-
ations imposed by the geometry of the stellarator.
We wish to treat the stellarator tube as if it were
straightened out to a right circular cylinder. Put
another way, we wish to define coordinates r, 6, z
in the tube which locally are approximately cylindri-
cal coordinates and in terms of which the (inner)
surface of the tube is approximately the surface
r = r,. It is natural to choose the curve » = 0 to be
the magnetic axis of the stellarator (i.e., the magnetic
line of force which closes upon itself after one
traversal of the length of the tube); r, 6 to be polar
coordinates in each cross section of the tube; z to
be constant on each cross section; and z to be are-
length along the curve r = 0 (with the sign of dz
chosen so as to make r, 6, z a right-handed co-
ordinate system). It remains only to determine the
relative rotation of the polar coordinates in different
cross sections, i.e., to determine the direction
6 = 0 (say) in each cross section. Choosing an
arbitrary vector at »r = 0 lying in one cross section
to give the direction 6§ = 0 there, we consider a
parallel vector at the point » = 0 of a neighboring
cross section. This parallel vector does not in general
lie in the neighboring cross section, but we may
choose its projection thereon as the direction § = 0.
In this way the direction 6 = 0 may be carried
successively around the length of the stellarator.

KRUSKAL, JOHNSON, GOTTLIEB, AND GOLDMAN

425

That this is the natural method of relating the values
of 8 in different cross sections may be seen in several
ways. One way is to observe that what we have
done is equivalent to requiring that vhe coordinates
r and 6 be invariant when the z c¢ross section is
projected onto the z + dz cross section in the
direction of the magnetic axis; the resultant values
of r and 6 in the z + dz cross section do not exactly
constitute polar coordinates, but the deviation is
of the order dz* and is therefore negligible. Another
way is to observe that the lines of force of the
confining magnetic field approximate to curves of
constant r and 6.

The “‘cylindrical” coordinates we have defined in
the tube are not single-valued functions of position
(except for r, which is the distance from the magnetic
axis). If we follow the values of 6 and z along a
closed curve which goes once around the length of
the stellarator in the direction of positive dz, we
find that when we have returned to the starting
point, z has increased by the length L of the magnetic
axis and 6 has increased by a definite angle « depend-
ing only on the geometry of the stellarator (and not
at all on the starting point or the particular curve
chosen). This is called the rotational transform
angle.

It can be shown by standard methods of the
differential geometry of space curves that —. is
equal to the integral of the torsion of the magnetic
axis with respect to its arc length, once around the
stellarator. (The torsion of a curve is the negative
of the rate of rotation, with respect to arc length,
of the osculating plane, i.e., of the plane determined
by the tangent and the radius of curvature. The
positive direction of rotation is determined by the
right-hand rule from the direction along the curve
in which the arc length is taken as increasing.) For
stellarators of twisted figure eight shape*, let ¢ be the
angle through which each end of a plane figure eight
must be rotated to arrive at that shape, the positive
direction of rotation for each end being clockwise
as seen from beyond that end. It is then easily
seen that

—4¢. (19

Now, (r, 6, z) and (r, 8 + ¢, 2 + L) represent the
same point in the tube, so in our perturbation theory
we can allow only elementary solutions for which
me + kL is an integral multiple of 2r. We recall
that the unstable perturbations we are concerned
with have m = 1, ka < 0,0 < Y < 1. Since ¥ =
|ak|r,, we see that there is one allowable perturbation
for each integer h (positive, negative, or zero)
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satisfying
0 < alre/L)(v + 27h) < 1. (20)

Thus the condition that no instability be allowable
is that

a(v + 2xh) > L/r,, (21

where h is that integer which gives the left-hand
side of (21) its smallest positive value.

It is clear that the stability criterion (21) depends
not only on the magnitude of & but also upon its
sign, unless « happens to be an integral multiple of
x. We note that « is positive or negative accordingly
as the induced longitudinal plasma heating current
has the same or the opposite direction as the longi-
tudinal confining magnetic field.

Condition (21) is more conveniently expressed,
for application, in terms of the plasma current
I = 2nryjo* = 2nroBo/uo. Since a« = By/B,, (21)
may be written

(By/ DG+ 27xh) > #oL/ 2‘"‘02-

VI. CURRENT DISTRIBUTION EFFECTS

(22)

Some longitudinal current distributions more
general than the purely surface current case of
Sec. II are treated elsewhere® by means of the energy
principle.® We quote the results without the compli-
cations of an external conductor. The fluid pressure
p is taken to be zero, B, is again taken to be much
larger than B,, and the condition for cylindrically
symmetric equilibrium,

3B +BH+ B =0, B
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Fra. 2. Limit of range of instability for axial current distri-
butions j ~ [1 — (r/r0)’] and j ~ (r/r0)".

¢ Johnson, Oberman, Kulsrud, and Frieman, U. S. Atomic
(El?)ersgy Commission Report No. NYO-7904 (PM-S-34)
1958).
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is satisfied for B, any function of r by choosing B,
to be the appropriate nearly constant function.
The conclusion then is that there is one allowable
mode of instability for each (positive or negative)
integer h satisfying

VZ < al (mi+ 2h) < m, 29)
where Z > 0 depends on the function By, i.e., on
the distribution of current j,, and on m. This is the
generalization of (20).

For m = 0, there is clearly no instability. For
m = 1, Z becomes infinite independently of the
current distribution, and thus (24) reduces to (20).

For m > 1, Z is given as a function of a positive
exponent » in Fig. 2 for j, proportional to1 — (r/r,)"
and also to (r/r,)’. The first type of distribution with
v = o and the second with » = 0 are identical, both
representing uniform current, and have Z = 1/
(m — 1).

For both types of distribution Z is greater than
1/m and increases monotonically with ». We see that
for each m > 1 there are thus always ranges of
values of a for which there is instability. These
ranges increase with ».

As » — o the second type of distribution ap-
proaches the sheet current case considered earlier
[and Z approaches (m + 1)/(m — 1)m]. The non-
vanishing of the ranges of instability in the limit
seems somewhat paradoxical because the limiting
sheet current case is stable for m > 1. The resolution
is probably that the unstable perturbations become
stabilized by nonlinear effects at smaller and smaller
amplitudes as one goes to the limit.

These results have applied when the plasma is
surrounded by vacuum. If instead it is surrounded
by pressureless plasma and the equilibrium fields
are the same, then the results form = O and m = 1
are the same, but for m > 2 there is now complete
stability. It seems uncertain whether vacuum or
pressureless plasma is the better approximation to
conditions in the region between the main plasma
and the tube wall in a stellarator.

VII. EXPERIMENTAL RESULTS

It has been shown in the previous sections that a
figure-eight shaped stellarator should exhibitanm = 1
instability for currents greater than a critical value
determined by (22). The magnitude of this critical
current depends on the geometry of the system
(through ., the rotational transform angle, and L
the axial length), the plasma cross-sectional area
(through r, the radius), the magnitude of the

MHD STABILITY AND THERMONUCLEAR CONTAINMENT



HYDROMAGNETIC INSTABILITY IN A STELLARATOR

longitudinal confining magnetic field By, and on
whether the current direction is along or opposite
to the magnetic field. It is interesting to note
that the critical current in either of the two direc-
tions is just sufficient to cause a resultant rotation
of either zero or 2r in the magnetic lines of force
just outside the plasma (i.e., to make the lines of
force close on themselves once around the machine).
This result is independent of the form of current
distribution.

The quantities ¢, I, By, and L are all easily
measurable. If all the lines of force are exactly
parallel to the walls of the discharge tube, then
r, is simply the discharge tube radius. If this is
not the case, r, is then the radius of the innermost
magnetic surface which anywhere touches the dis-
charge tube walls. By means of a collimated electron
beam, it is experimentally possible to determine r,
under low-field, steady-state conditions to an
accuracy of about 10%,. These values are confirmed
by measurements of the plasma inductance. In
various stellarators the effective radius (called the
radius of the aperture) is from 509, to 909, of the
discharge tube radius. A summary of some pertinent

TaBLE I. Physical properties of stellarators.

Tube Critical
Stellarator ¢ L inside Aperture current at
model radius radius 10 kilogauss
B-t 196° 450 cm 2.2 c¢m 1.6 cm 810 or 970 amp
B-2 196° 600 2.2 1.6 610 or 730
B-3 196° 600 2.2 2.0 950 or 1140

quantities is given in Table I, where the critical
current is calculated from (22), which becomes on
solving for I

By2rxry
J = =¥t
I-loL

with » = 0.911x and 1.089x for the two possible
directions of current and By, r, L, and g, are all in
mks units.

The observational results to be expected as a
consequence of this instability are not entirely
obvious. The observations on the B-1 stellarator
where the effects seem particularly apparent will
first be described in some detail, followed by a
summary of similar evidence from other devices

The ohmic heating electric field is usually applied
in the form roughly of a square wave of adjustable
amplitude by means of a transformer which links
the discharge tube. A more complete description of

", (25)
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(b)

"

F1a. 3. Plasma current and applied electric fields as functions
of time in B-1.

the characteristics of the stellarator is given by
Coor et al.” The duration time is self-limited by
saturation of the transformer. The plasma current
and applied electric fields are displayed as functions
of time on oscilloscopes. Figure 3 shows these data
for six different E fields, applied to a helium dis-
charge at an initial pressure of 6 X 10™* mm Hg.
The oscilloscope sweep speed is 1 millisecond per
cm from left to right and the initially applied electric
field in volts per c¢m is given in each case. The field

7 Coor, Cunningham, Ellis, Heald, and Kranz, Phys.
Fluids 1, 411 (1958).
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F1G. 4. Peak plasma current as a function of applied electric
field at various pressures in B-1.

gradually falls (because of the partial discharge of
a capacitor bank), and fluctuations appear which
are the result of plasma inductance effects. As
successively higher electric fields are applied the
current rises more rapidly and (in the first four cases)
to a higher peak value. However, for fields above
about 0.06 v/cm there is very little dependence of
peak current on applied voltage as shown in Fig. 4,
which shows peak current plotted against applied
electric field at various gas pressures. The current
essentially reaches a plateau, the level of which is
roughly independent of the pressure. As shown in the
figure the plateau value of current agrees with that
predicted from (25). Similar sets of data taken at
other values of confining field produce similar
effects at current levels proportional to the magnetic
field in quantitative agreement with prediction.
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F16. 5. Peak plasma current as a function of confining

field in B-1. The two curves are for plasma current in opposite
directions.
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These are the solid circles in Fig. 5. However, the
most striking effect is that of reversing the direction.
of the current with respect to the magnetic field.
These data are plotted as open circles in Fig. 5.
The ratio of slopes of the two lines is 1.22. On the
basis of the twist angle of B-1, one would expect a
ratio of 1.19. This difference is well within experi-
mental error.

Another point of interest is that whenever the
current rises above this critical limiting value, the
current and voltage become quite noisy as may be
seen in Fig. 3, and large amounts of impurities
appear in the discharge.”

Further verification is offered by the fact that
the critical value of current is the same in a hydrogen
discharge as in a helium discharge.

In all cases it is possible to drive the current well
above the critical current if a high enough electric
field is applied. Figure 6 shows, for example, a plot
of peak current s ohmic heating field for 3 different
values of magnetic confining field in the B-2 stellar-
ator. There is once more a definite leveling off at a
current consistent with prediction, but for high
ohmic heating fields the current does continue to rise.
However, in this case a slight step or irregularity
appears at approximately the critical current
(shown by the dotted lines in Fig. 6).

In the case of B-3, much more care was taken in
alignment of the field coils and the discharge tube.
As a result the aperture area as measured by the
electron gun is 13 cm® as compared with about 8
cm’® in both B-1 and B-2. Correspondingly higher
plateau currents are expected and are observed in
this case up to a magnetic confining field of
53 000 gauss. The discharge tubes in all the devices
previously mentioned are stainless steel with bakable
vacuum systems which may be pumped down to
pressures of the order of 107" mm Hg.

B-1 was formerly operated with relatively “dirty”
walls of stainless steel and later of Pyrex, such that
only base pressures of about 107° mm Hg were
possible. The metal tube required about 4 times as
much electric field to get initial breakdown and
showed very little evidence of the current leveling
off. In both these respects, on the other hand,
the “dirty”’ glass system was quite similar to the
“clean’’ metal system.

Clearly there is very satisfactory agreement
between theory and experiment with regard to the
m = 1 mode of instability. However, there is no
experimental indication of the existence of the
higher m modes. One possible explanation of this is
that the region between the main body of plasma
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and the tube wall might contain enough charged
particles to act as a good conductor, ie., as a
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pressureless plasma, in which case the higher m
modes would be stable. It is of course quite possible
that higher m modes of instability are present but
produce effects less easily observable than those due
to the m = 1 mode. For instance, they might merely
distort the original equilibrium configuration into
a new not greatly shifted stable configuration. This
would be consistent with the proposed resolution of
the paradox in Sec. VI. It seems highly plausible
that for long wavelength modes with m » 1, non-
linear terms become significant when the displace-
ment becomes comparable with the plasma radius,
whereas for long wavelength m = 1 modes, the
linearized perturbation theory remains valid until
the displacement becomes comparable with the
wavelength.
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The Influence of an Axial Magnetic Field on the Stability of a Constricted
Gas Discharge

By R. J. TAYLER

Atomic Energy Research Establishment, Harwell, Didcot, Berks.

Communicated by B. H. Flowers; MS. received 25th June 1957,
and in revised form 23rd August 1957

Abstract. It is shown that a suitable arrangement of axial magnetic fields and
conducting walls will stabilize a constricted gas discharge if all the discharge current
flows on its surface. For stability the axial field in the discharge exceeds that in
the low density region surrounding it and the wall radius cannot exceed the dis-
charge radius by more than a factor of five. In the other extreme case, when
the axial current is uniformly distributed across the discharge and the internal
field cannot exceed the external field, no complete stability results.

The problem of the stability of general current and field configurations is
reduced to the solution of two first order differential equations and a dispersion
relation. These equations are discussed qualitatively and we obtain a generaliza-
tion of a sufficiency condition for stability in the absence of an axial field, which was
given in a previous paper.

§ 1. INTRODUCTION

CONSTRICTED gas discharge in an insulating tube is observed to be highly
A unstable; it wriggles about and reaches the tube walls. Recently pub-

lished photographs of this behaviour include those of Carruthers and
Davenport (1957). Some account of the theory of these instabilities has been
given by Kruskal and Schwarzschild (1954) and Tayler (1957 a, to be referred to
asl). Ifahighcurrent constricted discharge is to be obtained in a quasi-stationary
state as discussed by Pease (1957), it is necessary to remove these instabilities. The
use of external magnetic fields of two types is immediately suggested : (a) an axial
magnetic field which may, and in general will, be present in both the discharge and
the low-density region surrounding it, and (b) fields due to eddy currents in highly
conducting tube walls. We shall discuss these two possibilities in this paper
though they are, of course, not exhaustive. First considerations show that
image currents act best on long wavelength instabilities and axial fields on those of
short wavelength ; can a suitable combination stabilize all wavelengths ?

In this paper we are mainly interested in the situation in which a uniform
axial magnetic field is initially present in a cylindrical tube containing a slightly
conducting gas. At this stage an axial electric field is introduced and the discharge
issetup. Further development depends on how rapidly power can be introduced
into the system. If the rise in conductivity of the plasma is sufficiently rapid, the
axial magnetic field will be largely trapped within the plasma as it contracts. Thus
we may hope to reach a quasi-stationary situation, when the discharge is constricted,
in which both the axial and azimuthal currents are carried in a thin layer near the
discharge surface and there is a virtual separation of axial and azimuthal fields. If
the conductivity rises less rapidly, the currents and fields will be more uniformly
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distributed in the equilibrium configuration. In either case subsequent develop-
ment due to dissipative processes, because of the finite though large conductivity
of both plasma and walls, will lead to interpenetration of the fields. We are thus
interested in the stability properties of fairly general configurations of both axial
and azimuthal fields.

What we in fact show is that it is possible to obtain completely stable configura-
tions of the first type; that is those in which the currents flow on the discharge
surface and the axial magnetic field is mainly trapped within the plasma. These
results depend critically on two factors.  Stability cannot be obtained without the
presence of conducting walls and these walls must be relatively close to the dis-
charge; inthe most favourable case the cylindrical wall cannot have a radius greater
than five times the discharge radius. Secondly if the discharge is to be noticeably
constricted a very high degree of trapping, of the axial field within the plasma,
is required ; the stable wall position rapidly approaches the discharge as the ratio
of internal to external axial field is reduced. We have also been able to consider
another extreme case in detail.  If the axial current is uniformly distributed across
the discharge and the axial field is also uniform, no completely stable configurations
exist.

Some of the results contained in this paper have been obtained independently in
Russia and reported by Artsimovitch in a talk given at Stockholm in September
1956+. Problems similar in some respects to those considered here have been
studied by Dungey and Loughhead (1954) and Roberts (1956) amongst others;
although their analysis is similar their emphasis is on properties of magnetic fields
rather than current channels.

The remainder of this paper is arranged as follows. In the next section the
fundamental equations and assumptions are stated. In §3 we discuss the proper-
ties of completely stable configurations in which all currents are carried on the
discharge surface. In §4 we formulate the equations for general current distri-
butions, and in § 5 obtain a full solution for one special case. In the final section
we discuss our results and further problems.

§ 2. AssuMPTIONS AND Basic EQuATIONS

In what follows we shall make the following assumptions:

(i) After the initial contraction of the discharge a quasi-equilibrium state is
reached. 'Thus we ignore any instabilities which may occur in this collapse
stage.

(it) The conductivity of the discharge in the quasi-equilibrium state is high
enough to be regarded as infinite in stability calculations. 'This means that
the time scale of instabilities which we studied in I is much shorter than the
time scale of field penetration due to dissipation. The validity of this
assumption can be checked by comparing the times ry/cy and 4mory?/c?
where 7, is the discharge radius, ¢ the velocity of sound, o the discharge
conductivity and c the velocity of light.

(iii) 'The wall conductivity may be treated as infinite and we ignore the possible
presence of gaps in the conducting walls.

(iv) We consider only equilibrium configurations in infinite cylindrical geometry
and with axial symmctry.

+1 am informed that similar results have been obtained in the United States

by M. Kruskal and J. L. T'uck and by M. Rosenbluth and are to be published.

150 MHD StABILITY AND THERMONUCLEAR CONTAINMENT



The Stability of a Constricted Gas Discharge 1051

The method of normal mode analysis used in this paper has already been
described in 1. Perturbations about the equilibrium state are such that any
variable takes the form

g=qe+qexplimb+k2)+wt} ..., (2.1)

where k is a real wave number and m is an integer positive or negative. In I all
cquations were even in m and k& so that they could both be taken as positive ; in the
present work it is found that m, k can both be taken as positive provided that we
consider positive and negative values of the axial field. The equilibrium con-
figurations of I are altered by the introduction of axial magnetic fields, and
perfectly conducting walls at r=R,. As before displacement currents are
neglected and we again state without proof that overstability cannot occur.

Plasma equations.

“T'he plasma equations, restated for reference purposes, are as follows:

dv jxB

Pg =" gradp + !T ...... (2.2)

3 .
a—f =—divpv ... (2.3)
curl B= ? ...... (2.4)
divB=0 . (2.5)

158

curl E=-— Eét— ...... (2.6)
divE=4me .. (2.7)
E+ 80 (2.8)

d d
and cither 11,7’; - ’-7)7’; ...... 2.9)
or divv=0. .. (2.10)

Vacuum equations.

In the vacuum the perturbed magnetic field B, is both irrotational and
solenoidal, leading to

B, "=kC, K, (k) +kCyL, (kr)  .ee... @.11)
B =T CK, (k) + = Col(kr) (2.12)
B.r=ikC,K,, (kr)+ikCyL, (k) en. (2.13)

where C, and C, are constants, arbitrary at present.

Boundary conditions.

The boundary conditions have been stated fully in I.  Here it is sufficient to
state that for the purpose of obtaining the dispersion relation we need to apply the
following two conditions on the perturbed plasma surface :

P=p+ B?/8xcontinuous,  ...... (2.14)
By, continuous.
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Only the second condition is required on the rigid conducting wall where it gives
C, L, (kRy)
G, - RJRRyT e (2.16)
The equation of the perturbed plasma surface is
r=rq+r exp {i(mb + kz) + wt}
and the unit normal vector to this surface is
n=(-1,0, 0)+( i ikr,)exp {i(m0+ k) +wt} ...... (2.17)

b
L)

§ 3. STABLE CONFIGURATIONS WITH ONLY SURFACE CURRENTS

In equilibrium we have an ideally conducting cylindrical plasma of radius 7,,
surrounded by a vacuum, which is itself enclosed by an ideally conducting
cylindrical wall at radius R,. The plasma has uniform density p,, pressure p,
and ratio of specific heats y. It carries a magnetic field (0, 0, By, b;) and on
its surface there is a sheet current (0, j,,*, jo*). In the vacuum there is a
magnetic field (0, By, 7o/r, By be). The axial fields inside and outside the plasma
are therefore expressed as fractions bjand be respectively of the azimuthal field B,,
at the plasma surface.

The configuration is in equilibrium provided that

. cB
Ju* = ﬁ (61— be]

—_————

. cB
=2 (3.1)
|
B,? |
and Po= —8‘% [1+be2—b2). J

We consider perturbations of this equilibrium configuration of the type given
by equation (2.1). Equations (2.6) and (2.8) combine to give

ikB, b i
Bl = u(: d [vln V1o» V12 + ; le Vl] e eesees (3.2)
Equations (2.3) and (2.9) give
2
p=-2dive, L (3.3)

where c4? =ypo/po, S0 that ¢y is the velocity of sound in the undisturbed plasma.
The third component of equation (2.2) gives

so that equation (3.2) becomes

ikB b w?
Bl= __::.;l [vlr’vlw vlz(l + k2—cs2)]' """ (3'5)

Then using equations (3.3) and (3.5) in conjunction with the first two components
of equation (2.2) we obtain expressions for v;, and v, in terms of v,, :
iDv,_ [k + w?[c}, + w?[c,?)

Vyp= — K+ o¥jcnd] s eeeaas (3.6)
muy, [k? + w?[cy? + w?fcy?)
V3= R Tl o 3.7)
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whete D stands for d/dr and c® = B2 b;2/4mp,, so that ¢, is the hydromagnetic

velocity in the undisturbed plasma.  Using equations (3. 4), (3.6) and (3.7) we now
obtain one equation for v,.:

rD[rDv,]=v,. [mz + (k% + w?/cy 2)(k? + w?/c 2) ]

Frocitelcd] " |0 e (3.8)
This is a modified Bessel equation and its solution is
0,.=CI,, (ar) 3
ke +ated] L) |
S ARl O b 3.9)

—ta[k? + w?[cy? + w?[cs?) ,
kR + w?lcy?] CrL, (ar)

U=

where the expressions for v, and v}, have been obtained from equations (3.7) and
(3.6), C is an arbitrary constant and

o (R + o?[cy?)(R? + w?[ce?)
7[R+ 0¥ + w?lcs?)
The boundary conditions can now be applied on the perturbed plasma
boundary, using the vacuum solutions of § 2, and we obtain

akry? [blz A Cally +be*2; bﬁ)] Ly (7o)

2(R + wlcs T, (7o)
_ K,u(kro) Ly (RRy) — 1 n(kro) K.’ (kRy)
= kro+(m+ bekrol| R AR~ T e R RRD] (3.10)

It is convenient to express this equation in terms of non-dimensional variables.
Thus we make the substitutions

kro=X,, arg=U,y, wryfcs=W,; and Ryjro=A. ...... (3.11)
Then equation (3.10) becomes
o, YW (1+b62 =027 1,,(Uy)
XO Uo [hi * 2 (X 2 + [,VOZ) Iml (UO)
m(XO) Im (A‘Xﬂ) lm(XO) K ’(AXO)
2
=Kot (mtbe Xol | B X L (AXe) I (KO K (AXS) |* 77 (3-12)

Instable configurations, it must be possible to choose values of the three parameters
bi, be and A so that for no positive values of X, .and for no positive integral values of
m can equation (3.12) have a positive root for Wy2. As mentioned in § 2, in order
to allow for all possible perturbations we must consider positive and negative
values of bjand be. In fact equation (3.12) is even in b;, and we shall find that we
need only consider negative b as positive b, always gives greater stability. by, be
and A are not completely free parameters as they must satisfy the inequalities

1+b23b2, A=l ... (3.13)

The first inequality follows from the third of equations (3.1) since the plasma
pressure must be positive.

The right-hand side of equation (3.12) is independent of W;; the left-hand
side varies between b2 X2 1, (X,)/1,,'(X,) and infinity as Wy? varies between zero
and infinity and it is never less than ;2 X2 I,(X,)/1,,'(X,). Thus equation (3.12)
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cannot have a solution for positive W2 if
Km(Xﬂ) Im,(AXO) _ Im(Xl)) Km,( A 0) bi2 ‘onlm(XO)

X, +(m+be X,)? e 7 v 7 < 7
ot (m+be X'} B X T, (AXS) =1, (Xo) Ko (A Xo) |~ T, (Xo)

This is both a necessary and sufficient condition for stability, so that if inequality
(3.14) fails to be satisfied for any m, X, the configuration is unstable. The
inequality has two obvious properties. 'There cannot be complete stability in the
absence of a trapped axial field (b;=0); for then the right-hand side of inequality
(3.14) is zero while the left-hand side is certainly positive for negative b, and m and
X, satisfying m+b.X,=0. Secondly if the inequality is satisfied for any
negative b, it is also satisfied for the corresponding positive b ; the additional term
4mb. X Km(Xo) Im,(AXO) - Im(Xo) Km,(AXQI)
ee Km'(XO) Im’(AXO) - Im,(Xo) Km,(AXO)
is negative. 'Thus as mentioned above we need only consider negative .. The
instability, in the absence of a trapped field, with the wave number satisfying
m+beX,=0, occurs when the perturbation helix and the equilibrium magnetic
field helix at the plasma surface coincide.

25

7o
|2¢|

Figure 1. Stability diagram for surface current, no conducting walls. ~ Stability is obtained
for values of |be|, |1| lying above the curve corresponding to a given value of m and
below the curve 1+ be2=5b;2. Complete stability for m #1 is obtained in the shaded
region.

We consider the behaviour of the inequality (3.14) first taking into account
axial magnetic fields but no conducting walls (A= c0). In this case we find it is
possible to stabilize both the m=0 modes and those with m >1 for suitable
values of by and b, but that without conducting walls it is not possible to stabilize
the m=1 modes. For given m and | b | there is a critical value of | ;| above which
complete stability is obtained ; at the same time | b | must satisfy inequality (3.13).
The results are shown in table 1 and also graphically in figure 1.  In the absence
of conducting walls the critical value of || for m=0 is independent of |b.|. It
can be seen that the curve 1+ b¢2= 4% and the critical points for m=0 and m=2
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define a region (shaded in figure 1) in which all but the m = 1 modes are stable. In
this region m =1 disturbances of high wave number will be stable. In table 2 we
show the critical wave numbers above which stability occurs for a series of points
on the upper and lower boundaries of the shaded region in figure 1.

Table 1. Surface Current. Critical Values of |4;| for Stability
m\'bcl 0-0 05 10 15 20
0 0-707 0-707 0-707 0-707 0-707
0-259 0-676 1:122 1-592 2073

2
3 0-169 0-492 0-801 1-130 1:468
4 0-126 0-409 0:660 0-926 1-202

Table 2. Surface Current. Critical Wave Numbers for Stability, m=1

|be] 0-0 05 10 15 2:0

[ 1-000 1-118 1414 1-803 2236
X, 0450 0869 0736  0-571 0-455
[b1] 0707  0-707 1122 1-592 2:073
X, 1025 1-886 0-991 0-661 0-497

If conducting walls are now introduced we find that the m =1 modes can also
be completely stabilized, though only if the walls are quite close to the discharge.
The values of ||, [be | for which complete stability can be obtained and the
corresponding values of A are shown in tables 3 and 4 and figure 2. Table 3
shows the values of A below which complete stability for m =1 can be obtained if
| 44| has its maximum value (1 +5e2=5;2). It can be seen that for b =0, A has a
maximum value of only 5, and that as | b. | increases from zero the value of A rapidly

Table 3. Surface Current. Critical Wall Radii for Stability, m=1

|be| 0-0 0-1 0-2 05 1-0
|61 1-:000 1-005 1:020 1-118 1-414
A 5-00 3:31 2-62 1-81 1-39

decreases. For given |be | as | b;| decreases the critical value of A decreases. A
must be greater than 1 and the minimum values of | 4; | for which stability is obtained
are shown intable 4. For other values of A between 1 and 5 we can obtain similar
stability curves in the (| 41|, | be |) plane and several of these are shown in figure 2.

Table 4. Surface Current. Minimum Values of | b; | for Stability, m=1,A=1
|be| 0-0 0-2 0-5 10 15 20
| 1) 0-000 0-429 0-683 1-114 1-580 2-061

The region of complete stability is mainly determined by the m =1 behaviour
but the m=0 disturbances must also be considered. With finite A stability
with m =0 is obtained for | ;| greater than the value given by

br=)-b2/(A2=1). ... (3.15)

Solutions of equation (3.15) for several values of A, |be | are given in table 5 and
plotted in figure 2.
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Table 5. Surface Current. Minimum Values of | ;| for Stability, m=0

A\Ibel 0-0 0-5 10 15 2:0
5-0 0-707 0-700 0-677 0-637 0-577
40 0-707 0-695 0-658 0-592 0-483
30 0-707 0-685 0-612 0-468 0-000
2:0 0-707 0-645 0-408 0-000 0-000
1-5 0-707 0-548 0-000 0-000 0-000

25

Figure 2. Stability diagram for surface current, with conducting walls.  Stability occurs in
the region above the curve marked with the given values of m and A and below the
curve 1-be2=5b32. Complete stability for given A occurs when a point lies in the
stability region for both m=0 and m=1.

Combining the results for m=0and m =1, complete stability regions for four
values of A (1-0, 1-5, 2-0, 3-0) are shown in figure 2. Thus as stated in § 1 complete
stability can be obtained, but with two critical provisions: (a) wall radius is not too
greatly different from discharge radius; () | be | is very small unless A is very close
to 1.

There is one other condition we may wish to apply. If the constricted dis-
charge is to be a major element in the configuration the heat energy stored in the
discharge should not be negligible compared with the total magnetic energy.
Clearly it will be negligible if we go to a configuration in which A is approximately
equal to unity and |be |(=|41])> 1; in this case the axial current and constriction
are of relatively minor importance. In table 6 we tabulate the plasma energy e,
as a fraction of the total energy for sets of (]bs], |be|, A) for which stability is
obtained.

Table 6. Stable Configurations. Fraction of Energy Contained in Plasma
A 1-0 1-0 1-0 15 15 20 20 3-0 30 50

|be| 0-0 1-0 20 0-0 0-5 0-0 02 0-0 0-1 0-0
[b1] 0-0 1-114 2:061 0-707 0-959 0-707 0-840 0-777 0947 10
€p 1-000 0-478 0-210 0-364 0-195 0-285 0-185 0-175 0-051 0-000
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§ 4. CONFIGURATIONS WITH CURRENTS NOT CONFINED TO THE SURFACE

We consider now the case which arises if the initial rate of current rise of the
discharge is not high enough for the surface currents and separated fields of the
last section to be realized; similarly these conditions will be obtained when the
initially separated fields have had time to interpenetrate. We obtain the equations
for the case of a completely general distribution of axial currents and magnetic
fields, but in this paper we consider only the case of an incompressible fluid. This
restriction is made purely for algebraic simplicity since in the problems studied in I
stability criteria were insensitive to this assumption. There is no difference in
principle and the equations for the compressible fluid can be treated by the methods
of this section.

We assume that in equilibrium we have an incompressible ideally conducting
fluid of density py, forming a cylinder of radius r,. The fluid carries a magnetic
field B, and current j, and has pressure po, where By, j, and p, have the radial
dependence given by

Bo=Buol0./()f (0 b)) )
o= BB 0,5/l (Y I e, (+2)
and  po= R -ghlg) +1-LU 2 [T U] e (43)

where the prime denotes differentiation with respect to 7. In equations (4.2) and
(4.3) and in what follows we write f for f(r) and f, for f(r,) and similarly for the
other functions. We have chosen the constant in equation (4.3) so that the
pressure vanishes at the plasma surface, and the plasma is surrounded by a vacuum
carrying a magnetic field (0, By ro/r, Bgob) ; as mentioned in I it is more satisfactory
to assume that the outer region has a small but finite density, but the stability
criteria are only slightly affected by such an assumption.

A perturbation of the form (2.1) is now applied, and from equations (2.6), (2.8)
and (2.10) we find that the perturbed magnetic field can be expressed in terms of the
perturbed velocities in the form

() (¢ 22 (1Yo
(2 ), 28, “8

The second and third components of equation (2.2) (using equations (4.1), (4.2),
(4.4) and (2.4)) now give two equations for p, in terms of the components of v;:

[Yo bhrg g(r}tof 2bkrg)] bEbTZ?og b(z,}:f bkrg?)’;\ )
e o[ (4 5E) e T - () )0
N R )

kY ? . bry?g (mf bkrg) b2mrdfg  krirf ( f )’ _0
- +—= — == =) |=0,
* Pow =i [ Jo 8o 7fogo fo

PROC. PHYS. SOC. LXX, II—B 3Y
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where we have introduced the dimensionless variable Y%= 4mp, w?re?/By2. We
eliminate p, between equations (4.5) and (4.6) to obtain

a1 5 5+ ) (- 2) o

If this is combined with equation (2.10) we obtain an equation between v,, and vy,

2k2r2 '°f(mf + Ii’f)

m(rey,) + [Y -~ s (ﬁf - bi‘;g> ]v1,+iv1, [m?+ k%) =0. ...... (4.8)
fo

The first component of the equation of motion (2.2) yields a highly complicated
equation between py, ©,,, 19, ¥;. and their first derivatives. However p, and v,
can be eliminated using equations (4.5) and (4.6) and we obtain a further equation
between ¢, and vy4:

2rof (mf . bkrg) - +m|:Y.,2+ (mf bkrg) (2r02f' 2if |, mrtf bkr,,zg)

o \Jo Jo 8o mife  mrfy " rf, 80
B (L o
+i 2 ('}'{ birg )("f'{ bk’g ) v=0. (4.9)

We now make the substltutlons
mv,,=¢ and mBu,, +ivy, =y ]

where _ 21%[1;{ bkrg] / [Yo 7o’ (ﬂf bz:g> ] } ...... (4.10)

The variables ¢ and y are not immediately relevant to the case m =0 but that case
can simply be treated separately. Using (4.10), equations (4.8) and (4.9) become
(ré) + (m*+ k*r?)x—m?Bp=0 ... (4.11)

oo sma (L2,

+|:1 {"‘('ffo /) (?{ bk’g)}p—mzm]¢=o. ...... (4.12)

We can now apply the boundary conditions (2.14), (2.15) at the perturbed
plasma surface and obtain the dispersion relation between m, k and w in terms of
the values ¢, xo of p and yatr=7r,. Thus

X0 _ _ (m + bkry)? [Kn(kro) I,/ (kRo) — L (kro) K,/ (kRy)]
b0 kro[Yo?+(m+bkro)*] [K,, (kro) L)' (kRo) — I,/ (kro) K., (kRo)]

...... (4.13)
We again introduce dimensionless variables (3.11) to obtain
Xo_ _ (m+bX,)? [Kn(Xo) I (AX,) — L(Xo) K, (AX,)]
$o  Xo[Yo®+(m+5X,)"] [K,,(Xo) L' (AXo) — I,/ (Xo) K, (AXo)] "
...... (4.14)
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Although the equations (4.11) and (4.12) and the dispersion reiation (4.14)
are relatively simple, it is clear that any general solution of them must be obtained
numerically. However we can make some general comments. We are interested
in the possible existence of functions f and g and constants & and A so that for no
values of X, and m can the dispersion relation have solutions for positive values of
Y2 Such functions fand g must yield values of p, which are consistent with the
idea of a constricted gas discharge and give field configurations which might be
expected to arise naturally.

If Y>>0, the right-hand side of equation (4.14) is positive; thus ¢, and x,
must have the same sign. In general ¢ and x have opposite signs at r=0. (The
only non-singular exception is when there is a uniform distribution of axial
current near the discharge centre.) ¢ cannot change sign before x and y cannot

change sign while
{m(rf -f) /(mf bkrg)} B-m@>0. ... (4.15)

This condition can be reduced to the form
lergf,,)2 2rf'+f) 2rdl
m+ > === .. 4.16
(m+ % ;L& (+19
where I,(r) is the total axial current contained within radius . Equation (4.16)
is a generalization of one that was givenin I. 'Thus in the absence of an axial field

instability cannot occur if
2rdl,
m>(= ==
>(I df)max ...... (4.17)

where the suffix means that we must take the maximum value of the quantity
betweenr=0andr =r,. Note that this sufficiency condition can give no informa-
tion about modes with m <2 as for non-singular current distributions
-
1, dr ] max

It is clear that the inequality cannot be as useful when the axial field is included ;
for, if b is negative and if f and g are given, there must be combinations of m and &
for which it fails. There are however some values of m and k for which there
must be stability, and for other values of m and k the inequality may only fail to be
satisfied for a narrow range inr; in this case y must change sign within this range if
instability can occur. The inequality itself is not a very restrictive condition and
it can be shown that in interesting cases y is still increasing at the time (4.16) fails
to be satisfied; thus it must have a turning value before it can vanish. These

general results should guide the numerical work which we hope will follow the
present paper.

§ 5. UniForM AxiaL FIELD AND CURRENT

Now we turn our attention to one special case for which a full solution can be
obtained. If the axial field and current are both uniform (gocl, focr) equation
(4.12) reduces to the simpler form

(rx)' +m*Bx+(1—m?pf¥)=0 ... (5.1)
where Bisnowaconstant. We generalize the problemsslightly to allow for differing
internal and external axial fields, by, be (5;2 <be?). Thus

B=2(m+ bikry)/m [Y o2+ (m+ bikrg)?]

3 Y-2
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and the dispersion relation becomes
_ (m + bt‘/\'())2 [Km(XO) I"II(AXQI) - Im(Xo) Km’(AXO)]
Xo[Yo? + (m + 5Xo"] [K,/'(Xo) L/ (AXo) - 1,/(Xo) K. (AXo)]*
v (522)

Xo _
b

Table 7. Volume Current. Equal Internal and External Fields, no Walls.
Table of Wave Numbers and Corresponding Growth Rates.

Xy b 0-0 0-5 —0-5 10 -1-0 20 —-20 50 —50
0-05 —0-6072  0-3796
0-10 0-3403 —1-3851  0-5062
0-15 --2:2175  0-3779
0-20 —0-3649 —0-9531  0-5059 0-0000
0-25 —0-1450 0-4315 —0-0302
0-30 —1:5089  0-4997 —0-1730
0-35 —0-4290
0-40 —0-7054 —2:0876 03269
0-50 0-2481 —0-2169 0-5088 0-5575 0-0000
0-60 —1-0455 0-0212
0-70 —0-0193
0-75 —0-2826 0-3959
0-80 —1-4083
1-00 0-4670 —0-3645 0-6090 —1-8111 0-0000
1:20 0-0778
1-40 0-1067
1-50 —0-6054 0-4095
1-60 0-0834
1-80 0-0048
2-:00 0-6935 —0-9650 0-0000
2:50 0-2053
3-00 0-3447
3-50 0-8319 0-4023

In obtaining these results care is required to find the largest root of the equation (5.2) for Y,?

(Tavler 1957 b).

Except that the definition of 8 has been altered the equations (4.11) and (5.1) are
exactly those found'in I in the absence of an axial field and their solution is

m2 B [(m? B2~ 1)V%r]  J, [(m2B2 = 12 hr]

$oc (m*BE— 1) kr (mpE =1y
) 282 _ 1)1/2
e Tl 1))

We have considered full solutions for m = 1 which was the most difficult mode
to stabilize for surface currents. It is immediately fairly easily seen that there can
be no complete stability. At the point 1+ be X, =0 the largest root for Y,? corre-
sponds to B=1. Thus Y,®=1-5:/be?, and this is positive unless by =be. If
by = be a perturbation expansion shows that Y2 is decreasing with X, at this point
and is positive for smaller X,. Thus stability cannot be expected for completely
penetrated fields. Qualitatively the results are only slightly affected by the presence
of conducting walls although some stability is produced at long wavelengths.
Results for m =1 are shown in tables 7 and 8 and figure 3. Intable7 and figure 3
are given results for A = oo (no walls) and several values of b;(=be). In table 8
are shown results for b= — 1 and several values of band A. The results may be
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expected to be qualitatively true for a compressible fluid although the discon-

tinuity in the growth rate against wave number curve at b X,= —~1 should be
removed.

b+0

05}

wt
»

-10

Pigure 3. Volume current. Plot of growth rate against wave number for the case of
equal internal and external fields. Curves are plotted for eight values of be(= b1);
they show the square of the dimensionless growth rate (Y,3=4mpyw?r,?/By?) as a
function of the dimensionless wave number (X, = kr,).

Table8. Volume Current. Internal and External Fields and Conducting Walls.
Table of Wave Numbers and Corresponding Growth Rates; b= —1

Xo
b A 0-0 0-2 0-4 0-6 0-8 10 12 1-4 1-6 1-8 2.0
-1 o© 0-0000  0-3673 0-5449 0-5240 0-3341 0-0000 0-0778 0-1067 0-0834 0-0048 <O
-1 2 —0-6667 —0-0204 0-3795 0-4741 0-3260 0-0000 0-0775 0-1061 0-0824 <0
0 o© 0-0000  0-4063 0-6970 0-8829 0-9738 1-0000 0-9788 0-9240 0-8485 0-7667 0-6935
0 2 —06667 0-0134 0-5334 0-8314 0-9656 1-0000 0-9756 0-9164 0-8387 0-7573 0-6861
1/ X,
1-0 09 0-8 0-7 0-6 0-5 0-4 0-3 0-2 01 0-0

0 © 1-0000  0-9931 0-9677 0-9140 0-8212 0-6935 0-6054 0-6575 0-8044 0-9443 1-0000
2 1:0000  0-9919 0-9634 0-9060 0-8112 0-6861 0-6034 0-6574 0-8044 0-9443 1-0000

§ 6. CONCLUSIONS AND FURTHER PROBLEMS
We can summarize the mathematical results of the last two sections by stating
that stable configurations may exist with the following properties :

(a) The conducting walls must be relatively close to the plasma and most

favourable results are obtained if the axial magnetic field is mainly trapped within
the plasma.

(b) There is thus no stability against small disturbances for highly constricted
discharges of the type considered by Pease (1957); we have not however ruled out
the possibility that such instabilities could be limited at finite amplitude.
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(¢) 'The most stable configurations in the absence of external fields are not the
most easily stabilized in their presence; thus a uniform current distribution was
the most stable configuration discussed in I but the fields considered in the present
paper cannot make it completely stable.

Before we can state that physically stable configurations can exist it is of
importance to obtain results for the case of partially interpenetrated fields, and
to be able to answer the following two questions :

(a) How closely can the axial and azimuthal fields be separated in an experi-
mental arrangement ?

() How long can a stable configuration be held against dissipative processes ?
In principle any answer to the second question must be related to a study of the
rate of penetration of fields into a highly ionized plasma, though an order of magni-
tude estimate can be obtained by taking a rigid conductor of similar conductivity.
It is hoped to obtain some results using a digital computer. There are still
obviously many approximations in this theory. We can conveniently divide
them into two classes, (a) geometrical and (b) physical.

Geometrical approximations.

{(a) These arise because actual experiments are not performed in infinite
cylinders. The photographs of Carruthers and Davenport (1957) show dis-
charges in a cylindrical tube with electrodes and in a toroidal tube. In addition
metal- walls may not be continuous but may contain slits for the introduction
of fields.

No direct attempt is made in this paper tc discuss the possibility of new
instabilities introduced by toroidal geometry and the curvature of the equilibrium
currentchannel. Anattempt can be made to approach finite geometry by applying
periodic boundary conditions to results already obtained in an infinite cylinder;
this places an upper limit on the possible instability wavelengths. Thus we can
formally obtain a completely stable configuration for the case of surface currents,
provided that the critical wavelength below which there is stability (shown in
table 2) is greater than the length of the system L. For X, to be small enough for
the resultant dimension to be practicable we must be in the part of the stability
diagram (figure 1) where |be|> 1, |bi|=¢|be|. Under these conditions there is
complete stability provided that b;> L/27r,.

This is however a situation in which the external field considerably exceeds
the discharge field and not one in which we are strictly interested in this paper.

The problem of periodic slits in an infinite conducting wall can be treated by
the method of this paper but the resulting dispersion relation is in the form of a
very complicated infinite determinant. However, qualitatively it appears that
narrow slits should not have a serious effect on an otherwise completely stabilized
discharge. Evenin the absence of walls only long wavelength instabilities remain ;
the narrow slits alter these normal modes by the introduction of higher harmonics
of wavelength comparable with the slit width and these are prevented from
growing by the trapped axial field.

Physical approximations.

(6) Obvious physical approximations are the neglect of all dissipative terms
and especially the artificial division of the fluid into regions of infinite and zero
electrical conductivity. One such neglected effect which might lead to slightly
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enhanced stability is the anisotropic electrical conductivity of the discharge;
this causes an axial magnetic field to increase towards the discharge centre.
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Stability of a Linear Pinch

By Bergen R. Suydam *

It is now well known that a trapped longitudinal
magnetic field has a stabilizing influence on a linear
pinch. Once such a stabilized pinch is set up, how-
ever, diffusion will lead to mixing of the initially
crossed fields; the torsion of the field lines will di-
minish and the plasma may ultimately become
unstable. It is the purpose of this paper to study
continuous plasma and field distributions in order to
see at what point instability might be expected.

A variational principle has been given! which
applies very nicely to the problem at hand. Briefly,
one subjects the plasma to a displacement § and
calculates the resulting change in the total energy, §W,
of the hydromagnetic system. Stability then hinges
on whether or not some g can produce a diminution
of the energy. If we define the vector Q =
V X[ExB] it turns out that the change in energy is

oW = [¢5{Q-Q — 4nJ-QxE]
+ yp(V-E)* + (V-§)(E-Vp) (1)

where y is the specific heat ratio and p is the pressure.
The integration is taken over the complete volume.
If a displacement exists which makes 8W negative,
we have instability. In the linear pinch we are
dealing with axial symmetry and the components of
the magnetic field in cylindrical coordinates are
B = (0, By, B;). Moreover, it is assumed that B,
B and p are functions of r alone. It is then possible
to analyze E in terms of displacements of the form

E=[&(r), £(r), £(r)) expi(kz + mb). @)

The integration with respect to 8 and z can be carried
out and 8W can be minimized with respect to £, and
£, by purely algebraic means. When this computation
has been carried out we find

W — f { (g + ¢8)

m? + (kr)?
where we have set
f= kB, + mBy|r
g = kB, — mByJr
h= (8n]./r)By
&= d¢'/dr,

|

+(f’—h)£2[

2rdr, (3)

* University of California, Los Alamos Scientific Laboratory,
Los Alamos, New Mexico.
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and have dropped the subscript » on £ for simplicity.

In order that W be a minimum with respect to
functions £, the displacement must be a solution of
the Euler-Lagrange equation

£+ P¢ +06=0,
where
P=3jr+ 2f| — 2k¥[[m® + (kr)? (6)

= —[(k)? + (m2 — 1)1 — 2k%]fm? + (kr)?]
— Bk rf2 .

When ¢ is chosen to be a solution of Eq. (5), the inte-
grand of Eq. (3) is a perfect differential and we have

rE(rfE + gf)]

m? 4 (kr)?
Equation (5) must be solved subject to certain
boundary conditions which we take to be

£(0) is finite,
£(R) =0. (8)

In choosing the second boundary condition we have
placed a perfectly conducting wall at » = R in order
to benefit from its stabilizing influence.? ¢ How-
ever, it will turn out that the wall has no stabilizing
effect on the modes we shall study.

Our previous experience with the theory of insta-
bilities > leads us to be particularly wary of “fluted ”
displacements which interchange magnetic field lines
without bending them. The bending of field lines
requires energy while interchanging them does not.
The purpose of the trapped axial field was to stabilize
the plasma by twisting the field lines so that any
arbitrary displacement will bend some of them.
Nevertheless, some displacements will bend some
field lines less than others and it seems reasonable
to expect that those displacements which bend the
lines the least will be the most dangerous.

Now the magnetic field lines describe a set of spirals
with a pitch

T2

8W=2[ (7)

"

= B,/rB, )

which, in general, varies from layer to layer. The
lines of theE field (2), on the other hand, describe a
set of spirals whose pitch is constant. If these two
sets of spirals should match over a finite region of
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space then a displacement is possible which does not
bend magnetic field lines. If, on the other hand, p’
is not zero anywhere, then it is nevertheless always
possible to choose % such that the two spiral systems
match at a particular radius. When this happens,
displacements are possible which bend magnetic
field lines very little in the neighborhood of this
point. Accordingly, we shall assume that the worst
choice of k, m is such that

f = kB, + mByjr (10)

vanishes at some point in (0, R). Let the point

where f = 0 be denoted by r = a.

Now we note that » = a is a regular singular point
of Eq. (5). The theory of such singularities tells us
that the solutions to Eq. (5) can be written in the
form

¢ = (r — a)” X Power series in (r — a),

where v is a root of the indicial equation

v+ + M =0, (11)
with
Smp’ [ \?
2 —
M= 7B,? (l‘,> r=a.
Thus we have
vy,s = 3(1 £ (1 — 4M2)%). (12)

If the roots are real we have 4M? < 1. Now the
boundary conditions (8) determine ¢ uniquely (except
for a normalization factor) in (0 — @) and in (2 — 7).
Therefore, on either side of » = a there will be an
admixture of the more singular of the two solutions;
ie.

¢ = (r — a)»{1 4 higher order termsin (r —a)}, (13)

where », is given by Eq. (12) with the minus sign.
For this choice of ¢ the integral (3) diverges and ¢ is
an improper function.

We can, however, consider the following proper
displacement: ¢ is the (properly normalized) solution
of Eq. (5) in the ranges 0 <7 <a —e anda+ ¢
<r< R ¢ is constant for a —e<r<a-+e
If € is chosen so small that the first term of Eq. (13)
dominates the power series, then this first term can
be substituted into Eq. (1) and it follows that §W
is always positive.

If the roots are complex, it is convenient to write
Eq. (12) in the form

vy, = — $(1 £ 4B)
B= (4M*—1)%.
In terms of B, the displacement ¢ is given by
¢=|r—a|-%cos{}Blog|r —a| + ¢}
X [1 4 higher order terms], (15)

where ¢ is a constant phase angle determined by the
boundary conditions. Again £(r) is an improper
function at » = a. We can circumvent this difficulty
by choosing a displacement given by Eq. (15) over

BErRGEN R. Suypam

the range 0 < 7 < a — e and setting ¢ = constant
fora —e<<r<a. Therange a <7» < R is treated
in a similar fashion. The quantity € is to be chosen
so that the leading term in Eq. (15) dominates at
r = a — e. When this choice of ¢ is made we obtain

f‘ { (fE + 88 | n_ h)g}Zrdr
(]

m? 4 (kr)?

@ B2u'?
©2(1 4 (ap)?)

+ (1 — 2M2) cos 2y + Bsin 2¢] ., (16)

[1 — 2M?

where ¢ is defined by
y=13Bloge + ¢ (17)

and can be made anything we please (modulo 27) by
a suitable choice of e. But the bracketed expression
on the righthand side of Eq. (16) oscillates between the
values 1 and (1 — 4M?) as ¢ varies. If (1 — 4M2)
is negative, it is possible to choose € so that (16) is
negative. Similarly, the integral taken from a to R
can be made negative and we have found that complex
roots imply instability.

The result of our investigation can be stated as a
theorem:

A mecessary condition that the m £ 0 modes of a
linear pinch be stable is that

(r/4) (w'[p)? + 8np'[B2 > 0 (18)

at every point in the plasma.

The method by which we obtained this theorem
from the Euler-Lagrange equation suggests the
likelihood that the above inequality might also be a
sufficient condition for stability. However, there are
two major difficulties which will be discussed in the
following paragraphs.

The foregoing analysis, leading to our theorem,
suggests the importance of extremely localized mixing
at any point of instability since the unstable modes
we have found are those for which the radial dis-
placement ¢ is very small except in the immediate
neighborhood of 7 = a, where the B and ¢ fields
interlace. Therefore, it is of interest to inquire:
suppose a small region is unstable, in the sense that
the inequality stated in our theorem is violated,
what then happens?

The answer to such a question is very difficult to
give, but an estimate has been made in the following
manner: A displacement § of the unstable type is
chosen. This leads to new values for p, B;, B, and
p in the neighborhood of r =a. Mixing is now
simulated by replacing p, p, By, B; by the values
obtained by averaging over 6§, and we ask whether
the new distribution is more or less stable using the
above theorem as a criteria.

The result seems to go qualitatively as follows:
The mixing of a small unstable region leads to a
distribution which is less unstable on the inside and
more unstable on the outside. Thus, if some interior
shell were unstable, it would mix until stable and
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this, in turn, would upset the stability of the next
shell which would proceed to mix and so on. In
this fashion such an instability would propagate
towards the surface. If, however, a layer near the
surface is given excess stability, the outward pro-
gression of the mixing should be stopped. This
excess stability of the surface layers ought to be
insured if the B, field were so programmed that u’
is made quite large in this region. The simplest
programming appears to be one which would reverse
B, in the vacuum after the plasma has pinched.

The inequality appearing in our theorem is a
necessary condition for stability. It might also be
argued that this is a sufficient condition since it was
obtained from the Euler-Lagrange equation of (3).
There are, however, two difficulties to be overcome
before this can be asserted. The first is that we did
not truly minimize 8W with respect to &, but rather

used a heuristic principle of minimum bending. How-
ever, the principle seems physically reasonable and,
the objection does not seem to be very serious. The
second difficulty is quite deep and arises because the
Euler-Lagrange equation is a necessary condition, but
in no way guarantees a minimum.

Some progress has been made in elarifying the
second difficulty. Note that the condition that £(0)
be finite determines a solution of the Euler-Lagrange
equation, and that ¢(R) =0 determines another
solution. It has been possible to prove the following
theorem:

The necessary and sufficient condition for stability is
that mnesther of the above-mentioned solutions to the
Euler-Lagrange equation has a zero in the open interval
(0, R).

This makes further progress possible by application
of the Sturmian theory to Eq. (5).

REFERENCES

1. I. B. Bernstein, E. A. Frieman, M. D. Kruskal and
R. M. Kulsrud, U.S. Atomic Energy Comm. Report
N.Y.O. 7315.

2. F. D. Shafranov, Atomnaya Energiya, 5, 709 (1956).
3. R. ]. Tayler, Proc. Phys. Soc. (London), B70, 31 (1957).

168

4. M. N. Rosenbluth, Proceedings of the Venice Conference
on lonization Processes (1957) (also Los Alamos Scientific
Laboratory Report LA-2030).

5. M. D. Kruskal and J. L. Tuck, Proc. Royal Soc., to be
published (also Los Alamos Scientific Laboratory Report
LA-1716).

MHD StaABILITY AND THERMONUCLEAR CONTAINMENT



ANNALS OF PHYSsICS: 10, 232-267 (1960)

Hydromagnetic Stability of a Diffuse Linear Pinch*
WiLLiam A. NEwcoMB

Lawrence Radiation Laboratory, University of California, Livermore, California

The hydromagnetic energy principle is applied to the derivation of necessary
and sufficient conditions for the hydromagnetic stability of a linear pinch with
distributed plasma current (a diffuse linear pinch). The results are quite
general in that the axial and azimuthal components of the magnetic field, which
determine the structure of the pinch completely, are treated as arbitrary func-
tions of distance from the axis. For purposes of illustration, the general results
are applied to the limiting case of a pinch with the plasma current confined to
an infinitely thin layer (a sharp pinch).

I. INTRODUCTION

We shall investigate the hydromagnetic stability of a diffuse linear pinch
(diffuse in the sense of a spread-out plasma current distribution; the sharp pinch,
in which the plasma current is confined to an infinitely thin layer, is included as
a limiting case). For this purpose we take as an idealized model any cylindrically
symmetrical and infinitely long configuration of plasma and magnetic field with
the following properties: (1) The plasma has infinite conductivity. (2) The
magnetic field has axial and azimuthal components, but no radial component.
(3) The plasma stress tensor is isotropic'; we may therefore speak of a scalar
plasma pressure P. (4) The plasma pressure gradient is balanced by the mag-
netic force J X B, where J = Vv X B is the plasma current density. (5) The
system is bounded on the outside by a perfectly conducting wall of radius b.
(6) It may also be bounded on the inside by a perfectly conducting wire of
radius a. If so, it is called a tubular pinch; if not, a columnar pinch. In either
case, if r = distance from the axis, the pinch occupies the space a < r < b,
where a = 0 for a columnar pinch. (7) There are no vacuum regions.” There may,
however, be regions in which the plasma pressure is negligibly small even though
the conductivity is still infinite.

Let us introduce cylindrical coordinates r, 8, z about the axis of symmetry.
The field component B, vanishes, and the components By and B, depend only on

* This work was performed under auspices of the U. S. Atomic Energy Commission.

1 The isotropy holds only for the equilibrium state; it is not preserved by small oscilla-
tions.

2 This restriction will be removed later on. (See Theorem 14 below.)
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r. (The field lines, consequently, form a system of coaxial helices with pitch
2nrB./By .) The current density in the plasma is determined by Maxwell’s equa-
tion J = V X B; the radial component J, therefore vanishes, and the other
components are given by

dB,

Jo=—dr; J, =

1d
r

ar (TBo). ( 1)

The radial distribution of the plasma pressure P is governed by the magneto-
hydrostatic equilibrium condition VP = J X B, which reduces to

dP dB, , By d

$+B2W+7%(TBO)=O. (2)
If By and B, are given as functions of r, then Jy , J, , and P, the other quantities
characterizing the equilibrium state, are determined by Egs. (1) and (2), except
for an additive constant in P. Since we are not assuming any particular boundary
condition to be satisfied by P at the walls, the additive constant will remain
undetermined, but it will be clear later on that the stability of a pinch does not
depend on this constant. For our purposes, therefore, the structure of a pinch
can be specified completely by giving the functions By(r) and B,(r) between the
limits a and b. We shall not assume any special form for these functions. Instead,
we shall allow them to be completely arbitrary in order to obtain results general
enough to be applied to any diffuse linear pinch.?

So far we have considered only the equilibrium state of a pinch, but in order
to derive stability criteria we must also examine the behavior of small displace-
ments from this equilibrium state. According to hydromagnetic theory, any such
displacement can be described by a single vector function of position, the dis-
placement £ of the plasma itself (7). The displacement in the magnetic field, for
example, is determined by the fact that the field lines are constrained to move
with the plasma (2, 3).

Our treatment will be based on the hydromagnetic energy principle, which
was first derived in its most general form by Bernstein et al. (1).* According to
this principle, a system is stable if a certain energy integral W (¥) is positive for
every displacement £ satisfying the boundary conditions, unstable if there exists
a ¥ for which W(¥) is negative. The energy integral is given by

W(E) = %fdax Q@+ JEXQ+ (V-DEVP +4P(V-DY, (3)

3 As is now evident, we are using the term ‘‘/diffuse pinch’’ in such a way as to include a
variety of configurations that would not ordinarily be described as pinches, e.g., stellarator-
type configurations in which the plasma is contained by a purely axial field.

4 See also Lundquist (4) for an earlier and less general form of the energy principle.
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where Q = V X (¥ X B) and v is the ratio of specific heats. Ordinarily, the most
straightforward way of applying the energy principle is to impose a conveniently
chosen normalization condition on £ and then to minimize W (¥) with respect to
§; the system is then stable if the minimum value is positive and unstable if it is
negative.

The energy principle says nothing about the marginal case where a nontrivial
£ exists for which W(¥) = 0, but none for which W(¥) < 0. When this happens
the system can be either stable, unstable, or neutrally stable, as we can see from
the simple example of a particle moving in the one-dimensional potential V(z) =
az’ + Bz'. The term az’ corresponds to W(), and the equilibrium point at
z = 0 is stable or unstable according as « is positive or negative. If « = 0, the
equilibrium is stable, unstable, or neutrally stable according as B8 is positive,
negative, or zero. Fortunately, we shall soon see that the question of what
happens in the marginal case is of no physical interest for a linear pinch.

We note, by way of justification, that the hydromagnetic energy principle is,
in the case of a diffuse linear pinch with an isotropic plasma stress-tensor,’
identical with the energy principle derived from the Boltzmann equation in the
limit of small m/e (6-9).° Nevertheless, it does not take into account the effects
of runaway electrons (10), negative Landau damping (11), or nonadiabatic
particle motions (12), all of which may give rise to instabilities that are not
predicted by our analysis.

It follows from symmetry considerations that the small-amplitude motions of
a linear pinch can be analyzed into normal modes for which &, , i , and ¢, are
real functions of r multiplied by exp(im#8 + tkz). We can therefore limit ourselves
to displacements of this form without loss of generality. Furthermore, the
original derivation of the energy principle (1), which refers to the class of all
possible displacements, remains valid even if the class of displacements is re-
stricted by fixing m and k. A separate stability criterion is thus obtained for
each set of values of m and k.

It is very easy to minimize the energy integral W(¥) with respect to the com-
ponents & and £, . The result is a reduction of W to the one-dimensional form
(13)

W(g) = ;f rdr A (e,j—f), (4)

s The diffuse pinch with a nonisotropic stress tensor will be treated by Bafios
and Schwartz (6).

¢ Since the Boltzmann equation accounts for the deviations from isotropy associated
with small oscillations, the agreement between the two energy principles implies that the
stability criterion is unaffected by these deviations. This is true because the deviations
vanish for the marginally stable normal modes, which form the boundary between stable
and unstable regions. (An exceptional case to which these statements do not apply will be
discussed in the next section.)
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where £ is an abbreviation for the radial component £, and A is a certain quadratic
form in ¢ and d¢/dr with m and k as parameters. The pinch is then stable for
given values of m and k if W(§) is positive for every ¢ and unstable if there exists
a ¢ for which W (¢) is negative. For a certain discrete set of values of m and k
there will exist a nontrivial £ for which W(#) vanishes, but none for which W (§)
is negative. We do not know whether the pinch is stable for these marginal values
of m and k, but it does not really matter because the pinch will definitely be
stable for neighboring values of k£ on one side of the marginal value and unstable
for neighboring values on the other side. For all practical purposes, therefore,
the stability condition resulting from Eq. (4) may be regarded as necessary and
sufficient.

Several years ago Rosenbluth (74) investigated the hydromagnetic stability
of a sharp columnar pinch’ with respect to displacements that are continuous
across the current layer. He later fpund, however, that the restriction to con-
tinuous displacements is not correct, and by dropping this restriction he was
able to derive a new and more stringent stability criterion (21). From the stand-
point of the energy principle the difficulty amounts to this (22): some of the dis-
placements for which the energy integral is negative in a diffuse pinch become dis-
continuous in the limit of an infinitely thin current layer. This is why the new
stability criterion is more stringent than the old one—the class of allowed dis-
placements is wider, since it now contains discontinuous as well as continuous
displacements. The most striking feature of the new stability criterion is that it
depends on the detailed structure of the current layer; one cannot simply treat
Js and J, as delta functions. For this reason it can only be derived by treating
the sharp pinch as a limiting case of the diffuse pinch. This circumstance alone
lends great interest to the theory of diffuse-pinch stability.

Suydam (13) has applied the hydromagnetic energy principle to a generalized
diffuse pinch.® After reducing the energy integral to the one-dimensional form
(4), he obtained the following necessary condition for stability:

r o fdlogu\* |, dP
ao (M) + 5> 0, (5)
where u(r) = Be/rB.. A pinch is stable for all values of m and & only if this in-
equality is satisfied for every value of r between a and b. (The quantity  is
simply 27 divided by the pitch of a field line.)

Suydam’s necessary condition for stability is obviously not sufficient. Consider,
for example, a sharp pinch that is unstable according to Rosenbluth’s criterion.
If the current layer is of infinitesimal thickness §, then the first term in (5),

7 Other treatments of the sharp columnar pinch are reported in Refs. 16-20.

8 For further information on the stability of a generalized diffuse pinch, see Refs. 17
and 18. Stability criteria have also been derived for diffuse pinches with special current
distributions, e.g., uniform J, and vanishing J, (17, 18, 23).
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which is necessarily positive, is of order 8> while the second term is only of
order 5. The pinch therefore satisfies Suydam’s condition in spite of its in-
stability.’

What is needed is a necessary and sufficient condition for stability in a form
suitable for numerical calculation, and our main purpose will be to derive one by
minimizing W (£). We shall start in Section II by minimizing with respect to the
components £ and £., thus reducing W to the one-dimensional form expressed
by Eq. (4). The following comparison theorem will be an immediate conse-
quence: A linear pinch is stable for all values of m and £ if and only if it is stable
form =1, —»o < k < o and for m = 0 in the limit as k — 0. Another im-
mediate consequence will be that the stability criterion is independent of v, the
ratio of specific heats. The next step, minimization with respect to & , will in-
volve two difficulties. First, the Euler-Lagrange equation for this minimiza-
tion problem is singular at certain values of r between a and b, and second, there
are cases of interest in which the relevant Euler-Lagrange solution gives not
the minimum but only a stationary value for W. The first difficulty will be
surmounted by proving that W can be minimized separately in each of the in-
tervals between singular points, and the second by proving that the pinch is
unstable whenever the Euler-Lagrange solutions fail to give a minimum. The
minimization will be completed in Section IV after a discussion in Section III
of some elementary properties of the Euler-Lagrange solutions. Then, in Sec-
tion V, the necessary and sufficient condition for stability'® will be given in sev-
eral forms, all of them depending on the behavior of the Euler-Lagrange solu-
tions. Since the Euler-Lagrange equation can always be solved numerically,
we will have found a definite procedure for determining the stability of any
pinch configuration that has been specified by giving By and B, as functions of
r. Finally, for illustrative purposes, we shall treat the sharp pinch in Section VI
as a limiting case, obtaining stability criteria in closed form. The results of that
section will agree with those of Rosenbluth for the sharp columnar pinch (21)
and with those of Newcomb and Kaufman for the sharp tubular pinch (22).

II. REDUCTION OF THE ENERGY INTEGRAL TO A
ONE-DIMENSIONAL FORM

As we have seen in the introduction, it is permissible to restrict our attention
to displacements for which £, , <&, and ¢, are real functions of r multiplied by
exp(tmf + tkz), thus obtaining a separate stability criterion for each set of
values of m and k. Assuming for the time being that m and k£ do not both vanish,

9 Exceptional cases arising when du/dr vanishes at some point in the current layer are
considered briefly in Section VI. (Points where B, vanishes give no trouble because d log u/dr
becomes infinite.)

10 This condition will be a slight generalization of the one given by Rosenbluth (21) on
the basis of a heuristic argument involving marginal stability.
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and dropping the exponential factor, let us transform to the real variables

£,

£ =&, (6a)
n=vz—— (&)-——Eo+zk£,, (6b)
ﬂ' = 1/({ X B)r = iEOBz - iEzBO- (60)

(The special case m = k = 0 will be treated later on.) The cylindrical compo-
nents & and £, are given in terms of 5 and { by

k"i’ + rBem |
krB + mBo

We substitute these expressions for & and £. in the energy integral as given by
Eq. (3), using only the real part of the complex £ because W(¥) is a quadratic
rather than a linear form, and eliminating J and VP with the help of Eqgs. (1)
and (2). The result, after some tedious but straightforward algebra, is

_*f i 1d :
W(E;ﬂrg') = Qj; rdr {A (E’E;‘) + 'yP [77 +;E;.(TE)]

i m¢ — rB.y

b = ' rB, ¥ mBy’

£ = (7)

(8)

erZ + m2 _ dE 2

where
(5 é§) 1 [(krB + mBi) %+ (krB, — mBy) ]
dr Bt + m? (9)
+ [(k’l‘B, + mB0)2 - QBoEd- (TBO)] E—zr

r r

o (E’g-f) R — + [(krBo — mB ) o (krBs + mB,) ] (10)

As Rosenbluth has pointed out (24), one can now obtain a very simple suffi-
cient condition for the stability of a tubular pinch. Since every term in the energy
integral is positive-definite except possibly the term in A containing Bed(rBs)/dr,
a tubular pinch is stable for all m and k if | 7B, | is an everywhere-decreasing
function of r. (This condition, of course, could never be satisfied in a columnar
pinch.")

11 Since Suydam’s condition is necessary for stability, it should obviously be a conse-

quence of Rosenbluth’s condition. That this is so can easily be verified by transforming the
inequality (5) into

rB.*[d log(ur*)/dr]* > 8B? d log(rBs)/dr.

174 MHD StABILITY AND THERMONUCLEAR CONTAINMENT



238 NEWCOMB

A pinch is stable for specified values of m and k if and only if W(gn,¢) is
positive for every set of trial functions (£,9,f) with # satisfying the boundary
conditions”

£(a) = &(b) = 0. (11)
Let us define
W(¢) = I?}n W(gn,$). (12)

Then W(&n,¢) is positive for every (&,9,¢) if and only if W(£) is positive for

every &.
The indicated minimization with respect to 5 and { is trivial. Since the terms

involving n and { are positive-definite and can be made to vanish by setting

n=—22 ), (13a)
rdr
f=to (sgf) (13b)
r
we obtain
T b dt
W) = 2—]; rdrA(E,a;). (14)

Equation (13a) is equivalent to V-£ = 0; hence W is minimized by incompres-
sible displacements. Furthermore, A does not contain v, so that the stability
criterion is independent of vy. (Other features of the motion do, however, depend
on v.) In particular, by choosing v = « we see that the stability criterion is
unchanged by replacing the plasma with an incompressible fluid."

A more convenient form of the energy principle is obtained by integrating
Eq. (14) by parts to eliminate the term in £ d¢/dr:

ww =3[ a L (gf) + ot (15)

12 The inner boundary condition must be modified slightly in the case of a columnar
pinch (see Section V).

13 This result has also been obtained on the basis of a marginal stability argument by
Shafranov for the special case of a diffuse pinch with a uniform current distribution (23)
and by Dungey and Loughhead for a sharp pinch (25). Tayler has raised certain objections
to the marginal stability argument (26); although his objections are justified, they do not
apply to our derivation, which is based on the energy principle.
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where f and g, functions of r with m and k as parameters, are given by

_ r(krB, + mBs)?

I= " (16)
_ 1 (krB, — mBy)® 1 s 2By d
9‘;W +;(krB,+mBo) T(TT(TBO) -
17
_d <WB,2 — m’By’
dr k*r? 4+ m? '

The coefficient f is never negative, but ¢ may have either sign. Another useful
expression for ¢ is obtained with the help of Eq. (2):

26%* dP 1 k4 mt— 1

5 (B A mB) e
2k

+ (k27.2 + m2)2

I eyt mdr
(18)

(K’B. — m’Bs’).

Excluding m = 0, let us compare displacements with different values of m
but with the same value of ¢ = k/m. If we make the substitution £ = mgq in
Eqgs. (16) and (17), we find that the second term in Eq. (17) is the only one
that depends on m. Since this term is positive-definite and proportional to m?,
the least stable displacements must be those with m = 1. Consequently, if a
linear pinch is stable form = 1, — o < k < o, it is also stable for all higher
values of m. (We are using the fact that W(¢) is unchanged when m and k
both change sign.)

If m = 0, Eq. (15) reduces to

2 pb
W = W) + o [ rar B, (19)

where

_x [t 2 (de\' | (B | , dP\ ..
WO(E) = ij; dTI:TB, ((Z‘) +(T+2717)E] (20)

The term containing & is positive-definite; hence the pinch is stable for all k
if it is stable in the limit as k¥ — 0.

Finally, we must consider displacements for which m and k both vanish.™
These displacements can be divided into two classes, those for which ¢, vanishes
identically and those for which & and £. vanish identically. We have W(§¥) = 0

14 This is the exceptional case mentioned in footnote 6; for these displacements the
hydromagnetic energy principle does not agree with the energy principle derived from the
Boltzmann equation.
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for displacements of the first class, which are therefore marginally stable. But
since it is physically obvious that these displacements are not only marginally
but neutrally stable, we can forget about them. Displacements of the second
class involve radial expansions and compressions of the plasma, so that v-¥
cannot vanish. Equation (15) is therefore not applicable, and we may expect
the stability criterion for this case to differ from the criterion for m = 0, k — 0.
By direct substitution in Eq. (3) we obtain, after an integration by parts,

b 2
W = ;[ dr [r(B,’ + B’ + vP) (gg) + 2B+ 4P %
a r dT
- (21
+ @2+ £

where £ is again an abbreviation for ¢, . (Since & and £ do not enter, there is
nothing analogous to the minimization with respect to » and ¢.) Let us subtract
Eq. (20) from Eq. (21). Then, using Eq. (2) and integrating by parts, we ob-

tain
b 2 2
W—W0=gj;rdr[Bo2(3—f—§>+7P<(d1—f+§>], (22)

which is necessarily positive. Consequently, if the pinch is stable for k — 0, it is
also stable for & = 0."°

Thg results of the last three paragraphs are summarized in the following theo-
rem.'

THEOREM 1. A linear pinch is stable for all values of m and k if and only if it is
stable form = 1, —o <k < © and form = 0,k — 0.

This theorem obviously allows a considerable simplification in the testing of a
pinch for stability. If we wish to find out whether a specified pinch is stable for
all values of m and &, we need only examine the special cases mentioned in the
theorem. It will sometimes be of interest, however, if a pinch is known to be
unstable, to find out exactly which values of m and & give rise to the instability.
For this reason we shall continue to state our results in terms of a general m
without restricting ourselves tom = Oand m = 1.

III. PROPERTIES OF THE EULER-LAGRANGE SOLUTIONS

We have now reduced the energy integral W(¥) to the simple form given by
Eq. (15). If we try to minimize this form with respect to £ we are led to the

15 This conclusion is not affected by the discrepancy between the two energy principles,
since Kruskal and Oberman have shown (7) that hydromagnetic stability is always a suf-
ficient condition for stability according to the Boltzmann equation.

16 This theorem, in a somewhat weaker form, was first proved by Rosenbluth for the
special case of a sharp columnar pinch (74); this is the paper in which attention was re-
stricted to displacements that are continuous across the current layer.
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() - =0, (23)

the solutions of which give stationary, although perhaps not minimal, values for
W (£). This equation has a singular point wherever f vanishes, and we can see
from Eq. (16) that this happens wherever

krB, + mBy = 0, (24)

or in terms of the quantity u entering into Suydam’s condition, wherever k 4
mu = 0. (The singular points can also be characterized as those values of r for
which m8 + kz, the phase of the dlsplacement is constant along a line of force.”)
For given values of m and k, let 7", r{* .. r{? be the singular points. (The
number and location of the singular points are, of course, functions of m and k.)
These points divide the interval @ < r < b into ¢ + 1 subintervalsa < r < r“)
< r<r® -, r? < r < b, which we shall call the independent sub-
mtervals.

In general it is not possible to continue an Euler-Lagrange solution past a
singular point."® For this reason we cannot speak of an Euler-Lagrange solution
in the entire interval a < r < b; each solution is defined in only one of the in-
dependent subintervals. We shall see in the next section, however, that the en-
ergy integral can be minimized in each of these subintervals separately, so that
there will never be any need to continue a solution past a singular point.

As is now evident, we shall have occasion to evaluate the energy integral not
only over the full interval @ < r < b, but also over subintervals r, < r < 7z,
where a < r, < r; < b. We therefore introduce the notation

W) = 5 [ a1 (gg) +of]. (25)

The displacement ¢ in Eq. (25) may be an Euler-Lagrange solution if there are
no singular points between r, and r, , in which case W is especially easy to evalu-
ate:

W(ri,re;¢) = g/r:’ dr I:f (j—f)z T dr (f ZE) E]
frd ( ) —ﬂfdE

17 In a columnar pinch the point r = 0 is also singular. We shall consider the effect of
this singular point in Section V, restricting ourselves in the meantime to singular points
that satisfy Eq. (24).

18 This is true only because £ is a real variable. If it were complex we could go around
the singular point by analytic continuation, but the resulting solutions would generally be
multivalued.

Euler-Lagrange equation

(26)

T

1
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In particular, if r, and r, are vanishing points of f£, the energy integral is equal
to zero.

Let us now examine the behavior of the Euler-Lagrange solutions in the
neighborhood of a singular point r, . (We are, of course, interested only in one-
sided neighborhoods of r, , for we have seen that an Euler-Lagrange solution is

defined in only one of the independent subintervals.) If x = |r — r, |, the co-
efficients f and ¢ are approximated in the neighborhood of r, by
f=a2’, with a>0, (27)
and
g =25 (28)
where « and g are independent of z, and the Euler-Lagrange equation reduces to
adx(’z—f) Bt = 0. (29)
The solutions are z~™ and x~"*, where n;, and n, are the roots of the indicial
equation
n'—n— (B/a) =0, (30)

(We are neglecting the marginal case where n, = n,.)

The condition for n, and 7, to be real and unequal is that « + 48 should be
positive. If a 4 48 is negative, the roots of the indicial equation are complex
conjugates, and the real solutions of the Euler-Lagrange equation are

t=2z"4+2" and t=i(z " — 2 ™). (31)

These solutions are oscillatory in the neighborhood of r, .
Using the fact that ¥ 4+ mu = 0 at a singular point, we can obtain the expres-
sions for « and 8 from Eqs. (16) and (18):

_ Ts dBo
«= k2rs? + m’( o T kBt m dr >r=r.
(32a)
_ r.Bs'B (d log #)
B2 dr ’
_ 2By dP
B = B 3 (32b)

where B* = By’ + B.’. The condition for nonoscillatory solutions, a + 48 > 0,
then reduces to Suydam’s condition:

r o a2fdlogu\’ , dP
§B' (T) +a7> 0, (33)
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where all quantities are evaluated at r, . We shall prove later on that a pinch
with oscillatory solutions is unstable, thus verifying that Suydam’s condition is
necessary for stability.

Let us suppose that Suydam’s condition is fulfilled at r,, so that n; and n,
are real. It follows from Eq. (30), the indicial equation, that n; + n, = 1, and
we shall take n, > n; . The solution 2™ "* is necessarily infinite at r, , but z™™
can be either infinite or zero, depending on whether 7, is positive or negative.
Furthermore, W(¢) converges at r, for the solution 2~ ™ but diverges for = ™.
We shall say that an Euler-Lagrange solution is small at r, if it behaves like a
constant multiple of 2™ ™ in the neighborhood of r, . Now let £,(r) be an Euler—
Lagrange solution that is small at r, , and let £(r;r;) be one that vanishes at the
nonsingular point r, . These solutions are uniquely determined except for nor-
malization factors, and it is easily seen that with a proper choice of the normali-
zation factors we have

£(r) = lim £(r;n). (34)
17,
Thus the smallness of a solution at a singular point is analogous to the vanishing
of a solution at a nonsingular point.

We shall find that the stability criteria depend critically on the existence or
nonexistence of points at which certain Euler-Lagrange solutions vanish. The
following theorem, a special case of Sturm’s separation theorem (27), will then
be of interest.

TaeoreM 2. If £(r) and &(r) are any two linearly independent solutions of
the Euler-Lagrange equation in the same independent subinterval I, and if
£(r) vanishes at r, and r, , two distinct interior points of I, then &(r) vanishes
at some point between r, and r, . (We shall assume that r, and r; are consecutive
vanishing points of £, ; it is clear that this involves no loss in generality.)

Proor. Since £(r) and &(r) are solutions of the Euler-Lagrange equation,
we have

(f&')" — gk = 0, (35)

(f&') — g&% = 0. (36)
Multiplying Egs. (35) and (36) by & and & respectively, and then subtracting,
we obtain

fw + fw =0, (37)

where w = &t/ — £.&/, the Wronskian of the two solutions. It follows that wf
is constant, so that w must have the same sign everywhere. We have w(r,) =
&(r)t/ (n) and w(r:) = &(r2)&/(r2). Clearly, £&'(r1) and &/(r.) have opposite
signs; hence &(r1) and &(r:) also have opposite signs, and &(r) must vanish
somewhere between r, and r; .
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CoroLLARY 2-1. Let I be an independent subinterval with a singular endpoint
74 , suppose that Suydam’s condition is fulfilled at r, , and let £(r) be an Euler—
Lagrange solution that is small at r, . Then, if £&(r;) = 0, where r; is an interior
point of I, every other solution vanishes at some point between r, and r, .

Proor. If r, is an interior point of I that is close to r, , it follows from Eq. (34)
that £(r;r;) vanishes not only at r; but also at some point close to r, . The corol-
lary is then obtained as a limiting case of the theorem if £(r;r,) is used in the
place of £.(r).

IV. THE MINIMIZATION OF W(¢)

We must find out whether W (¢) is positive for every physically admissible
trial function £(r). These functions, in addition to satisfying the boundary con-
ditions (11), must all be continuous, since they represent displacements of a
real fluid, the plasma. We can, however, extend the class of admissible trial
functions by allowing finite jumps at the singular points. To see this, consider a
£(r) that varies rapidly in the neighborhood of a singular point r, . More pre-
cisely, suppose that ¢ changes by a finite amount in the interval from r, — 7 to
T+ + n, where 7 is very small. In this interval f and d¢/dr are of order n° and
n ', respectively, so that W(r, — n, 7, + n;¢) is of order 5. If we take the limit
as 7 — 0, then ¢ becomes discontinuous and W (a,b;t) approaches a finite limit.
This means that we can allow displacements with finite jumps at the singular
points, since displacements of this type can be approximated to any desired de-
gree of accuracy by continuous displacements. (We cannot, of course, allow finite
jumps at nonsingular points; they would make infinite contributions to W.)

We shall say that a pinch is stable in an independent subinterval [ if the
energy integral is positive over I for every £. We then have the following theorem:

THEOREM 3. A linear pinch is stable for specified values of m and & if and only
if it is stable in each of the independent subintervals.

Proor. Let r, be a singular point, and write W = W, + W, , where W, and
W are the contributions from the intervals a < r < r, and r, < r < b respec-
tively. (It is clearly sufficient to consider only one of the singular points.) We
shall prove that W is positive for every £ if and only if W, and W, are individually
positive for every ¢ The ‘“if”” part of this statement is obvious, and to prove the
“only if”’ part, suppose that a ¢ exists for which W, is negative. Then define &, as
follows

gr), a<r<r,

b(r) = (38)

0, r.<r<b.

(The displacement £, will in general have a finite jump, but we have seen that
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this is permissible at a singular point.) We now have
W(a! b’ El) = W(a’ Ts 751) = W(a’ Ts 3 E) < O’ (39)

which is what we set out to prove.

This theorem enables us to minimize W (¢) for the complete intervala < r < b
by minimizing it in each of the independent subintervals separately. We are not
yet prepared, however, to minimize W (£) for an interval with singular endpoints.
Let us therefore eonsider the following preliminary minimization problem: If
r; and r, are nonsingular points of the same independent subinterval, find the
displacement £(r) that minimizes W(r,, r, ; £) while satisfying the boundary
conditions

En) = a,
£(r2) = co.

Since the minimizing £, if there is one, will make W stationary, we know that it
must be an Euler-Lagrange solution. Let & (r) and &(r) be the Euler-Lagrange
solutions satisfying

(40)

&(n) =0, & (n) =1, (41)
52(.7'1) =1, 52'(7'1) = 0. (42)

Now if &(r;) = 0, there will exist a unique Euler-Lagrange solution £(r) satis-
fying the boundary conditions (40); it is given by

f(r) = 20k oy 4 e, (43)
51(7‘2)
We shall prove that W(r,, r, ; £) is minimized by &(r) if &(r) never vanishes
in the interval r, < r < r,."” As usual, it does not matter what happens in the
marginal case where £,(r) vanishes at 7., and we shall prove that W is not
minimized by &(r) when & (r) vanishes anywhere between r, and 7 .

Suppose first that &(r) never vanishes in the interval n < r = r,. To prove
that &(r) minimizes the energy integral we shall define an auxiliary integral
Wt(r,, 2 ; £), called the Hilbert invariant integral,’® with the following proper-
ties: W1(£) has the same value for all ¢ satisfying (40), Wi(¢) < W(§) for
every such £ other than &, and Wi(&) = W(&). It will then follow that the
inequality

W) 2 WiE) = Wih) = W(k) (44)

19 This condition for minimization is a special case of Jacobi’s condition (28).
20 The use of a Hilbert integral is a standard technique in the calculus of variations.
An elementary exposition of this technique is given in Ref. 28.
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holds for every ¢ that satisfies (40), and this will prove that W is indeed mini-
mized by & .

Before defining the Hilbert integral, let us consider the singly infinite family
of functions

Ea(r) = Ati(r) + abs(r), (45)

where A is an arbitrary constant. These functions are obviously solutions of the
Euler-Lagrange equation, and & is one of them. Their graphs, which we shall
call characteristic curves, cover the strip 1 < r < r, in the r,¢ plane (see Fig. 1).
This is true only because &(r) never vanishes in the interval r < r < rp ; if it
did vanish at some point ro of that interval, then the characteristic curves would
all intersect at the point [ro, c1£2(70)], and none of them would pass through any
other point on the line r = r, parallel to the ¢ axis (see Fig. 2).

We now define p(r,£), a function of position in the r.¢ plane, as the slope of
the characteristic curve passing through the point (r,£). This function is defined
everywhere in the strip r < r £ r,. On the line r = r;, as is evident from
Fig. 1, we have p — 4, except at the point (7, ¢), where p takes on finite
values depending on the direction of approach.

Eh
CHARACTERISTIC
CURVES

C
Col------- °

Cl
C' --------

T

Fi1c. 1. Illustration of Theorem 4. The curve C, is the graph of £o(r), and C| is the graph
of any other function £(r) with the same values at the endpoints.
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r=r, r=ry r=ra

Fi1g. 2. Characteristic curves for an interval failing to satisfy the condition for minimiza-
tion. The curve C, is the graph of £o(r).

Every characteristic curve satisfies the differential equations
d¢ = p dr, (46)
d(fp) — gkdr = 0, (47)
of which the first expresses the definition of p and the second the fact that the

characteristic curves represent Kuler-Lagrange solutions. Also, since p is a
function of r and ¢, we have

dp = (9p/dr) dr + (9p/df) dE. (48)

Eliminating the differentials from Eqs. (46-48), we obtain the following useful
relation between the partial derivatives of p:

(9/0r)(fp) + fp(9p/3t) — gt = 0. (49)
The Hilbert integral can now be defined by
W) = T [ (" + o8®) dr + 2fp(d — p ar)] (50)
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where C is a curve lying in the part of the r,£ plane bounded by the lines r = r;
and r = r, . This definition, of course, can be applied only to curves for which the
integral converges. For this reason the left endpoint of C, if it is on the line
r = r1, must be the point (r1, ¢;). But this condition, since it is satisfied by the
graph of any function £(r) satisfying the boundary conditions (40), will not
cause any trouble. It is also satisfied by the characteristic curves, for which Wt
is obviously equal to W.
Let us write the Hilbert integral in the form

Wie) = 5 [ (F.ar + Feap), (51)
where
F.=g¢ —fp', F¢=2fp (52)
From Egs. (49) and (52) we obtain
(9F./dt) — (dF/ar) = 0. (53)

The Hilbert integral is therefore path-independent; its value depends only on
the endpoints of C.

Let Co be the graph of &(r), and let C; be the graph of any other function
&(r) satisfying the boundary conditions (40). We have Wt(C,) = W1(C,)
because Wt is path-independent, and W1(Co) = W(Cy) because C, is a charac-
teristic curve. Furthermore,

w(c) - wie) =73 [ {[f (3_5)2 n gg] i

— (fp’ + ¢f) dr — 2fp(dt — p dr)} (54)

T dE__ 2
=3 clf(% P) dr,

which is always positive because f is always positive. As we have already seen,
it follows immediately that W(C,) > W(Co), which proves that & is the mini-
mizing displacement. We state our result as a theorem:

TueoreMm 4. If r, and r; are nonsingular points of the same independent sub-
interval, and if the nontrivial Euler-Lagrange solutions that vanish at r, never
vanish in the interval < r < 7, ,” then the energy integral W(r,, ry ; £) is
smaller for an Euler-Lagrange solution &(r) than it is for any other £(r) with
the same boundary values.

2 Since these solutions are constant multiples of each other, this condition will hold
either for all of them or for none.
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CoroLLARY 4-1. Under the conditions of Theorem 4, W(r,, r, ; £) is positive
for every nontrivial £(r) that satisfies the boundary conditions £(r;) = £(r,) = 0.

Proor. By Theorem 4, we have W(t) > W(&), and W (&) = 0 because
%, the Euler-Lagrange solution that vanishes at both endpoints, must vanish
identically.

Theorem 4 states that W is locally minimized by the Euler-Lagrange solu-
tions; i.e., it is minimized whenever r, and r, are sufficiently close together.
Specifically, they are sufficiently close together when r; is to the left of the next
vanishing point, if one exists, of the nontrivial Euler-Lagrange solutions that
vanish at 7, . We shall see below that this condition on the closeness of r, and 7,
is, if the marginal case is neglected, not only sufficient for minimization but also
necessary.

The endpoints r; and r, do not enter symmetrically into the statement of
Theorem 4 and its corollary. Nevertheless, their roles can be interchanged be-
cause of Theorem 2. We can also obtain from Theorem 2 a symmetrical form of
the criterion of closeness for r; and r, : r; and r; are sufficiently close for W to be
minimized by & if there is no nontrivial solution of the Euler-Lagrange equation
that vanishes at two distinct points between r, and r, . We shall, however, con-
tinue to state our results in a form that is unsymmetrical with respect to the
two endpoints; the roles of the endpoints can always be interchanged by an
application of Theorem 2 or its corollary.

Now suppose that £(r), the Euler-Lagrange solution satisfying Eqgs. (41),
vanishes at some point r, between r; and r, . The characteristic curves for this
case are shown in Fig. 2. It is clear, first of all, that p is infinite on the line
r = 19, 50 that the proof of Theorem 4 does not apply here. In the place of Theo-
rem 4 we have

TueoreM 5. If r, and r; are nonsingular points of the same independent sub-
interval, and if the nontrivial Euler-Lagrange solutions that vanish at r, also
vanish at some point ro between r, and r, , then for any Euler-Lagrange solution
&(r) there exist functions §(r) with the same boundary values and with W(r, ,
r; &) < W(r, r2; ).

Proor. Let the Euler-Lagrange solution &(r) be represented by the curve
(12345) in Fig. 3, let the arc (1 6 7 3) be another characteristic curve between
r, and ro, and let &(r) be the function represented by the broken curve
(167345). The Hilbert integral has the same properties as before if it is re-
stricted to curves lying entirely within the strip r, < r < ro. Applying it to the
characteristic curves (12 3) and (16 7 3), we obtain W(1673) = W{(1673)
= W1(123) = W(123),sothat W(r,,r; &) = W(r, r:; &). Now replace
the segment (7 3 4) with the arc (7 8 4) representing an Euler-Lagrange solu-
tion. Because of the local minimization property of Euler-Lagrange solutions,
we can take the points 7 and 4 so close together that W(784) < W(7 3 4).
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y
£(r)=(12345)
g,(r)= (167345)
Cof ~ =~~~ """~ =m=-———---45  £,(r)=(167845)
o 5 —
|
C| ———— :
|
2 |
r=r' rs ro rs fz

Fia. 3. Trial functions used in the proof of Theorem 5

Let £(r) be represented by the curve (167845). Then W(r,, r; &) <
W(ri,rs; &) = W(r, r2; &), which means that W is not minimized by &(r).

The following corollary shows that the pinch is unstable whenever the Euler—
Lagrange solutions fail to minimize the energy integral.

CoroLLARY 5-1. Under the conditions of Theorem 5, there exists a £(r) that
makes W(r,, r;; £) negative and satisfies the boundary conditions &(r,) =
&(r2) = 0.

ProorF. As in Corollary 4-1, the Euler—Lagrange solution £(r) that vanishes
at 7, and 7, vanishes identically. Hence W(r,, r2; &%) = 0, and according to
Theorem 5 there exists a £(r) vanishing at r, and r, for which W takes on a
smaller value. (A displacement of this type is shown in Fig. 4.)

CoroLLARY 5-2. Under the conditions of Theorem 5, the minimum value of
W(r, ry ; &) with respect to the class of displacements satisfying the boundary
conditions (40) is minus infinity.

Proor. By hypothesis, the Euler-Lagrange solutions that vanish at r, also
vanish at some point ro between r, and r, . Let us pick a point r; between r, and
ry (see Fig. 5). Then, according to Theorem 2, the Euler-Lagrange solutions
that vanish at r; also vanish at some point r, between r, and ro . Theorem 5 can
then be applied to any interval r4, < r < rs, where r5 is between r; and r, , and
Corollary 5-1 guarantees the existence of a displacement £ (r) that vanishes out-
side this interval and makes the energy integral negative. Now let £&(r) be any
displacement that satisfies the boundary conditions (40) and vanishes between
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3 \ 5
\
| \ : ——
1] 4 6 r2
F1G. 4. Illustration of Corollary 5-1. The segments (1234) and (356) represent Euler-
Lagrange solutions, and £(r) = (12356) is a displacement for which W(r, , r, ; £) is negative.
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= Fie. 5. Illustration of Corollary 5-2. The dotted curves represent Euler-Lagrange solu-

tions, and the solid curves represent the displacements £:(r) and &(r) mentioned in the
text.
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rsand r5, and let £4(r) = A&(r) + &(r). Since the functions £,(r) and £(r) do
not overlap, we have

W(rl y T2 5 EA) = AZW(TI yTe ) El) + W(Tl y T2 5 52) (55)

The displacement £,(r) satisfies the boundary conditions (40), and it follows
from Eq. (55) that the energy integral is negatively infinite in the limit as
A — o,

Let us now define a regular singular point as a singular point at which Suy-
dam’s condition is fulfilled, so that small solutions exist. The next two theorems
are the analogs of Theorem 4 for intervals with singular endpoints.

THEOREM 6. Let 7, be a regular singular point and . a nonsingular point of one
of the two independent subintervals adjacent to r, , say the one extending to the
right. If the nontrivial Euler-Lagrange solutions that are small at r; never vanish
in the interval r, < r < 7, (see footnote 21), and if £&(r) is one of these solutions,
then W(r,, r2 ; £) has a smaller value for &(r) than it does for any function
£(r) satisfying the conditions

£(r) bounded, ns<rsnr, (56a)
&(r2) = &(r), (56b)

with the exception of & itself if n; < 0, since &, satisfies the conditions (56) in
that case. (Notice that there is no restriction on the value of ¢ at the singular
point r; , except that it should be finite.)

ProoF. Let us make use of the Euler-Lagrange solutions that are small at
r to define a family of characteristic curves as in the proof of Theorem 4 (see
Fig. 6). These solutions are given in the neighborhood of r, by

E=fa(r) = A(r — )™M, (57)
where A is some constant; hence

p(r) = &/ (r)

R

—An(r — ) ™
—m&/(r — n).

Thus p becomes infinite as r — r, , but the integrand in the Hilbert integral W
remains finite because f is proportional to (r — r)>. Furthermore, there is no
other value of r for which p becomes infinite, since the relevant Euler-Lagrange
solutions never vanish between r, and r, . It follows that Wt(C) is well-defined
for any curve C in the strip r, < r < r, of the r,£ plane. As before, we can prove

(58)

11

that W1(C) depends only on the endpoints of C, and that W(C) = Wt(C), the
equality sign holding only when C is a characteristic curve. Now let &(r2) = ¢,
let C; be the graph of any function £(r) satisfying the conditions (56), and let
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F1a. 6. Illustration of Theorem 6. The curve Cy is the graph of £¢(r) plus a segment of
the line r = r; and C, is the graph of some function £(r) satisfying the conditions (56).

-r

Co be the graph of &(r) plus a vertical segment joining the left endpoint of C,
to the point (r, , M), where

0 if n, <O,
M=+w if >0 and ¢ > 0, (59)
—oo if ;>0 and ¢ <O.

It is easily verified that Wt vanishes for the vertical segment. Then W(r, , r, ; §)
= W(C)) > Wi(C,) = WT(Co) = W(r, r2; &), as we set out to prove.

CoroLLARY 6-1. Under the conditions of Theorem 6, W(r,, r, ; £) is positive
for every nontrivial £(r) that vanishes at r, and remains bounded between r
and r; .

TuroREM 7. If r; and r, are successive singular points, both of them regular,
and if the nontrivial Euler-Lagrange solutions that are small at r, never vanish
in the interval r, < r < r,, then W(r,, r, ; £) is positive for every nontrivial
£(r) that remains bounded in that interval:

Proor. The characteristic curves are again defined by the Euler-Lagrange
solutions that are small at r, . In the neighborhood of r, these solutions are linear
combinations of 2 ™! and ™ "%, but "* dominates. Therefore, by analogy with
Eq. (58), p(r,t) is approximately equal to ns¢/(r; — r), and the Hilbert integral
converges at 7, as well as at r; . The rest of the proof is the same as it was for
Theorems 4 and 6, except that C, is now defined as follows: If £(r;) = ¢, and
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£(rs) = ¢, then Co is composed of the segments from (r;, ¢;) to (r, 0), from
(r1, 0) to (r2, 0), and from (ry, 0) to (r;, ¢;). (The curve C, represents a de-
generate Euler—Lagrange solution; an Euler-Lagrange solution that is finite at
both of the singular endpoints must vanish identically between the endpoints.)

Theorem 7 and Corollaries 4-1 and 6-1 give conditions under which the mini-
mum value of W is zero. This does not mean that the stability is marginal, how-
ever, because the minimum value is attained only when ¢ vanishes identically;
we have proved that W is positive for every nontrivial £.

The reader may wonder why it was necessary to prove each theorem separately;
why not prove Theorem 7, for example, by a straightforward limiting process
applied to Corollary 4-1? The reason is that such a limiting process would show,
not that W (¢) is positive for every nontrivial £, but only that it is non-negative.”
The limiting process does, however, lead directly to the analog of Theorem 5 for
an interval with singular endpoints:

TueoOREM 8. Suppose that r, is a singular point, and that r. is a point, either
singular or nonsingular, of the independent subinterval bounded on the left by
71 . Then the minimum value of W(r, , r; ; £) for the class of displacements satis-
fying the boundary conditions (40) is minus infinity in each of the following
cases: (1) r, is irregular, and (2) r, is regular, and the nontrivial Euler-Lagrange
solutions that are small at r, vanish at some point between r, and r; .

Proor. In each of the cases mentioned there exist Euler-Lagrange solutions
that vanish at least twice between r, and r. . This follows in the first case from
the oscillatory nature of the solutions in the neighborhood of 7, and in the second
from Corollary 2-1. We can therefore find a subinterval with nonsingular end-
points for which Theorem 5 is applicable, and the present theorem follows im-
mediately.

To summarize the results of this section, let Wyin(r,, 72 ; &1, ¢2) be the mini-
mum value of W(ry, r; ; £) for the class of displacements satisfying the boundary
conditions (40), let £(r) be the Euler-Lagrange solution that satisfies the
boundary conditions

£(r;) = ¢; if r; is a nonsingular point (¢ = 1 or 2), (60a)
£(r) is small at r; if r; is a regular singular point, (60b)

and let £ (r) be any nontrivial Euler-Lagrange solution that satisfies the bound-
ary condition

£(r;) = 0 if r, is a nonsingular point, (61a)
£(r) is small at r, if r, is a regular singular point. (61b)

22 For the same reason, separate minimization theorems should be stated and proved for
intervals with the singular endpoint » = 0 in a columnar pinch (see below, Section V).
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(We note that the solutions &(r) and & (r) are undefined when 7, is an irregular
singular point, and that &(r) vanishes identically when r, and r; are both singu-
lar.) It has been shown that

Wain(ri, 250, ¢) = W(r, rp; &) (62)

if £(r) never vanishes in the interval r; < r £ r,. This minimum value (which
is independent of c¢; when r; is singular) is attained only when £(r) = &(r) if
71 and 7, are both nonsingular, and not at all if at least one of them is singular,
since &(r) then fails to satisfy the boundary conditions (40). Finally, we have
shown that Wnin = —  in every nonmarginal case not covered by Eq. (62),
i.e., whenever r, is an irregular singular point, and whenever £,(r) vanishes some-
where between r, and r, . Because of this last result, the derivation of stability
criteria is not hindered by failure of the Euler-Lagrange solutions to minimize
the energy integral—the pinch is obviously unstable whenever this happens.

V. STABILITY CRITERIA

The following theorem, an immediate consequence of Corollary 5-1, gives a
necessary condition for stability.

TueoreEM 9. For specified values of m and k, a linear pinch is unstable in an
independent subinterval I if there exists a nontrivial Euler-Lagrange solution
that vanishes at two distinct interior points of 1.

CoroLLARY 9-1. A linear pinch is stable (1) for specified values of m and ¥,
or (2) for all values, only if Suydam’s condition is fulfilled (1) at every singular
point, or (2) everywhere.”

Parts (1) and (2) of this corollary follow respectively from the oscillatory
character of the Euler-Lagrange solutions in the neighborhood of an irregular
singular point and from the fact that every point is singular for some values of
m and k. The next corollary is the limiting form of Theorem 9 obtained by an
application of Corollary 2-1.

CororrArY 9-2. For specified values of m and k, let I be an independent sub-
interval with a regular singular endpoint r, . Then the pinch is unstable in I if
the nontrivial Euler-Lagrange solutions that are small at r; vanish at any in-
terior point of 7.

We now have necessary conditions for stability, and also, for a tubular pinch,
a simple sufficient condition (see Section IT). Assuming that there is no more
than one singular point, Rosenbluth (27) has given the following necessary and
sufficient condition: If there is no singular point (Case 1), then the nontrivial

2 Although Suydam’s condition, as expressed by the inequality (33), refers to a point
that is singular only for certain specified values of m and k, it does not involve those values

explicitly. It is this circumstance that makes possible such a simple result concerning
stability for all values of m and k.
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Euler-Lagrange solutions that vanish at r = a do not vanish anywhere in the
interval @ < r < b; and if there is a singular point, say at r, (Case 2), then the
nontrivial solutions that vanish at r = a, and the ones that vanish at r = b, do
not vanish anywhere in the intervals ¢ < r < r, and r, < r < b respectively.
He derives this condition by means of a marginal-stability argument, which he
states only for Case 1. Since it is not entirely clear how this argument is to be
extended to Case 2, it seems desirable to give a more rigorous proof, which we
shall now do. Also, we shall make use of the small solutions to take account of
situations where there is more than one singular point.

The following theorem and its corollaries give the necessary and sufficient
conditions for stability of a tubular pinch, the columnar pinch requiring separate
treatment because of the singular point at r = 0.* To simplify the statement of
these conditions, the definition of smallness is extended to nonsingular points as
follows: An Euler-Lagrange solution #(r) is small at a nonsingular point r, if
£(r) = 0.

TraEOREM 10. For specified values of m and k, a tubular pinch is stable in an
independent subinterval I if and only if (1) Suydam’s condition is fulfilled at the
left endpoint® if that point is singular (i.e., not equal to @), and ( 2) the Euler-
Lagrange solutions that are small at the left endpoint never vanish in the interior
of I. (We are, as usual, neglecting the marginal case where these solutions are
small at the right endpoint of I.)

Proo¥r. The “only if”’ part follows immediately from Theorem 9 and its corol-
laries. The “if”’ part, since every displacement must satisfy the boundary condi-
tions (11), follows from Corollaries 2-1 and 6-1 if I is bounded on the left by a
and on the right by a singular point, from Corollary 6-1 if it is bounded on the
left by a singular point and on the right by b, from Theorem 7 if it is bounded by
two singular points, and from Corollary 4-1 if there are no singular points, so
that 7 is bounded by a and b. (Our use of Theorems 6 and 7 implies that we are
restricting ourselves to trial functions that are bounded in I. This restriction is
legitimate even though the Euler-Lagrange solutions are unbounded, for £(r)
represents a physical displacement of the plasma and must therefore be finite
even at the singular points.)

Combining this result with Theorem 3, we obtain

CoRroLLARY 10-1. A tubular pinch is stable if and only if (1) Suydam’s condi-
tion is fulfilled at every point, and (2) for all values of m and k, and for every
independent subinterval 7, the Euler-Lagrange solutions that are small at the
left endpoint of I never vanish in the interior of /.

24 The analysis of singular points given in Section III is not applicable at »r = 0 because
Eqgs. (27) and (28) are not valid there.

2% Although Suydam’s condition is needed at the left endpoint to guarantee the existence
of small solutions, it need not be stated explicitly for the right endpoint because it follows
from (2). For the same reason, it will not be mentioned at all in Corollary 10-2.
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According to Theorem 2 and its corollary, the left endpoint of I can be re-
placed in Theorem 10 and in Corollary 10-1 by the right endpoint. Also, the
stability criterion can be given a symmetrical form:

CoroLLARY 10-2. A tubular pinch is stable for specified values of m and & if
and only if there is no nontrivial Euler-Lagrange solution that vanishes twice
in the same independent subinterval. Thus the stability condition given by
Theorem 9 is not only necessary but also sufficient.

As we have already stated, a columnar pinch differs from a tubular pinch in
certain respects. First, the left-hand boundary condition is not £(0) = 0 but

£0) =0 if m = %1, (63a)
£(0) =0 if m= <1 (63b)

Second, Suydam’s condition cannot be fulfilled at r = 0, since the left-hand side
of the inequality (33) necessarily vanishes there; and third, the minimization
theorems of the last section are not applicable to an interval bounded on the
left by r = 0. But these differences are not essential. As one can easily verify,
the Euler-Lagrange solutions never oscillate at r = 0, so that Suydam’s condition
does not need to be fulfilled; and special minimization theorems can be proved
for intervals 0 < r < r; by the same methods that were used for intervals r, <
r < r, .”® Without going into details, we merely give the result.

TueoreM 11. Necessary and sufficient conditions for the stability of a columnar
pinch are given by Theorem 10 and its corollaries with the following modifica-
tions: (1) An Euler-Lagrange solution is said to be small at r = 0 if it satisfies
the boundary conditions (63). (2) Although Suydam’s condition must still be
fulfilled for every r > 0, it need not be fulfilled at » = 0.

CoROLLARY 11-1. A columnar pinch has the same stability criterion as a tubu-
lar pinch in the limit as a — 0, Bg(a) = 0. Thus the stability of a columnar pinch
is not changed if an infinitely thin wire with no current is placed along the axis.

Proor. Although it is obvious that the wire can have no effect on stability
for m # +1, we might expect it to stabilize the m = =1 displacements because
of the added constraint that § must vanish at a conducting surface. That such
a stabilizing effect does not in fact occur will be shown by examining the Euler—
Lagrange solutions in the limit as @ — 0. For m = =1 these solutions behave
in the neighborhood of r = 0 like 1 + Ar® and 1/7%, where A is some constant.
For small but finite a, therefore, the solutions that vanish at r = a are constant
multiples of

£(r) = 1+ Ar* — ;i (1 + Aad*). (64)

26 The casesm = 0, m = =1, and | m | > 1 must be treated separately, since f and ¢ de-
pend on different powers of = in these three cases.
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In the limit as @ — 0 this solution approaches 1 + Ar*, which satisfies Eq.
(63b), so that the stability criterion of Theorem 10 approaches that of Theorem
11.

CoroLLARY 11-2. A necessary condition for the stability of a columnar pinch
is that the plasma pressure should have a minimum at r = 0 (29). (Because
the ohmic heating is greatest at a finite distance from the axis, this condition
is generally fulfilled in practice, even though the density has a maximum at
r=20.)

Proor. For small but nonvanishing values of r Suydam’s condition reduces
to dP/dr > 0, since this term is of order r while the other term is only of order

3
r'.

Theorems 10 and 11 solve the problem that was posed in the introduction.
That is to say, they furnish a definite procedure for determining stability, since
the question whether an Euler-Lagrange solution vanishes anywhere in the
interior of I can always be answered by solving the Euler-Lagrange equation
numerically. Furthermore, Theorem 1 enables us, if we are not interested in the
stability of individual values of m and k but only in whether the pinch is stable
for all values, to restrict our attention to the special cases m = 0,k > 0and m =
1, —0 <k < .

Another necessary and sufficient condition for stability is given by

TueoreM 12. For specified values of m and k, a linear pinch is stable in an
independent subinterval I if and only if: (1) Suydam’s condition is fulfilled at
the endpoints 7, and r, if they are singular and if r, # 0. (2) If &(r) and &(r)
are the Euler-Lagrange solutions satisfying

&(r) small at r, , &i(ro) = 1, (65a)
£&(r) small at r, £(r) = 1, (65b)
where 7, is some interior point of 7, and if £(r) is defined by
&i(r), n<r<mn

) (66)
&(r), ro <1 < 1y

bo(r) =
then £(r) does not vanish anywhere in the interior of 7. (3) The energy integral
satisfies the inequality W(r,, . ; &) > 0, which is equivalent because of Eq.
(26) to

&' (r0) > &'(ro). (67)

Proor. It follows immediately from Theorem 9 and its corollaries that parts
(1) and (2) are necessary, and the necessity of part (3) is obvious. To prove
sufficiency, we note first of all that W (r,, r, ; £) is positive whenever £(r,) = 0
because of Corollaries 4-1 and 6-1, so that our attention can be restricted to
displacements for which £(r,) # 0, and in particular to the ones that are nor-
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malized to unity at ro. We shall therefore minimize W (r,,r; ; £) with respect
to the class of displacements satisfying the normalization condition ¢(ry) = 1,
the boundary condition

Er) =0 ifr =aq, (68a)
£(ry) finite if r, is a singular point, (68b)

and a similar boundary condition at r. . Since &(r) does not vanish in the interior
of I, it follows from Theorem 4 if r, = a and from Theorem 6 if r, is singular
that W(r,, ro ; £) is minimized by & . By applying Theorem 2 and its corollary
we see that W(ro, r; ; £) is also minimized by & . The trial function & therefore
minimizes W over the entire interval I, and the pinch is stable if and only if
W(ri,r:;8) > 0.

VI. THE SHARP PINCH

Let us now suppose that the plasma current is restricted to a layer of thick-
ness 6 and apply Theorem 12 in the limit as 8 — 0 to obtain the necessary and
sufficient condition for stability of a sharp pinch. We assume that the current
layer extends from ro; to ro., where ro. — r0; = 8, and that the functions By,
B., and P are continuous at ro; and 7. . These functions are of order unity
throughout the layer, but their derivatives are of order 8 '. The regions a <
r < ro; and ro; < r < b contain vacuum fields with components By.ry;/r, B,;
and By.ree/r, B.. respectively. Furthermore, the plasma pressure P is uniform
in these regions. Equation (2) can be integrated across the layer in the limit as
6 — 0, and we obtain the pressure balance equation

Pi + 1/231'2 = Pe + 1/2Be2y (69)

where B’ = By’ + B.’ and the subscripts ¢ and e refer to r,; and 7o, respectively.
Suydam’s condition is given by the inequality (5), which is obviously satisfied
throughout the constant pressure regions. It can also be written in the form

rB’  (d¢Y [dP _B’cos ¢ d¢] B® .,
m(&:)+ &  Asnedr | & ¢>0 (70)

where ¢ = tan"'(By/B.) is the angle between the magnetic field and the z axis.
In the current layer the three terms of (70), are of order §*, 8, and 1 respec-
tively, and the first term is necessarily positive; hence Suydam’s condition is
fulfilled everywhere unless d¢/dr vanishes at some point where P is a decreasing
function of r.*" Let us therefore assume that d¢/dr never vanishes in a region of

27 We shall not worry about what happens when B? vanishes at some point r, . Since B?
is positive on each side of r, , any pinch with B%(r;) = 0 can be regarded as the limiting form
of a pinch in which B? never vanishes. For the same reason, we can assume that dg/dr
changes sign whenever it vanishes.
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decreasing pressure. (The quantity d¢/dr measures the rate of rotation of the
magnetic field as we pass through the layer, and the vanishing of d¢/dr means
that the field reverses its sense of rotation.)

The next step in applying Theorem 12 is to find the Euler-Lagrange solutions
&(r) and &(r) in each independent subinterval. Suppose first that there is at
least one singular point in the layer but none in the constant-pressure interval
a < r < ry, let r, be the first singular point, and consider the independent
subinterval ¢ < r < r,, taking ro = ro;. In the constant-pressure part of this
interval we can transform the Euler-Lagrange equation into Bessel’s equation
by a change of variable, obtaining the general solution

£(r) = o T (k1) + K (| r ], 1)

krB.: + 2% By,

r

where ¢, and ¢, are constants of integration. Our notation for Bessel functions is
the same as Dwight’s (30). Using the boundary condition &(a) = 0, we find
that

ckr

T e [Iml(kr)Km,(l ka I) - Km,(l kr I)Im’(ka)], (72)
krB.; + ___T_o. By;

51(7‘) =

where c¢ is a normalization factor. Choosing ¢ so that £(r,;) = 1, we obtain
1
51,(7‘0.') = 7_‘(7 L(Toi , a), (73)

where
mBy — krB,
mBa + kTBz r=r;

Erl + m® krd o (kr) K (| kry |) — | kry | K| kry |) 0 (kry)
k2ry L (kr ) Ko’ (| kra |) — Ku' (| kry |) In' (r2)

L(n , ry) =
(74)

+

It can easily be shown from elementary properties of the Bessel functions that
£(r) never vanishes between a and ro; .

To find £(r), the solution in the current layer, let e be some length such that
8’/ry K € < §, and start by considering the interval r, — ¢ < r < r,. The ap-
proximations f & a(r — r,)* and g = 8 are good throughout this interval, and
since £(r) is small at r, , we obtain

b(r) = 4 ( - )_"‘ , (75)

€
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where A is some constant of order unity and =, is the small root of Eq. (30).
One can easily see from Egs. (32) that « and 8 are of order 6~ and 6~ respec-
tively. Equation (30) therefore reduces to n, =~ — 8/, which is of order .

Let us next consider the interval r,; < r < r, — ¢, for which the right-hand
boundary condition is that £(r) and its derivative should both be continuous:

Ea(rs — ) = A, (76a)
&' (rs — ) = Amy/e. (76b)

We assert that the approximation &(r) = A is valid throughout the interval
now under consideration, and to verify this assertion we write

d (,d&\ _ ~
ar (f t?) = gt = Ag. 77
It follows immediately that
;i 3—52 = mae — ‘/; g dr. (78)

Now n;, a, and ¢ are of order 8, 6 °, and &' respectively. We can therefore
neglect the term n,ce and set the upper limit of integration equal to r, with
errors of order ¢/8,” which is small because the main term is of order unity. The
result is

1,.dt f T

In the neighborhood of 7, we have f =~ a(r — r,)* ~ (r — r,)?/8%; hence the
integration of Eq. (79) leads to

rg—€ 2 2
B —a~ [ 2T (80)

(r — r.)2~ €

Since 8°/¢ is small, the solution £(r) is indeed close to 4, and Eq. (79) is approxi-
mately valid everywhere between ro; and r, — e. Choosing A = 1 to satisfy the
second part of Eq. (65b), we obtain

f("oi)i'z,(?'o;') = —f“_ g dr. (81)

This equation is exact in the limit as ¢/6 and 8’/ ¢ both approach zero.
It is clear ‘that the trial function &(r) given by Eq. (66) does not vanish

28 As a matter of fact, these two errors cancel to lowest order, so that the remaining error
is even smaller than ¢/8. This cancellation, however, is not needed in the proof.

198 MHD STABILITY AND THERMONUCLEAR CONTAINMENT



262 NEWCOMB

anywhere between a and r,. We can therefore substitute Egs. (73) and (81)
into the inequality (67) to obtain the stability criterion

1 f(ro) L(re; , @) + f ’ gdr > 0. (82)
Toi ros

Now suppose that there is a singular point r{® between a and ro;. (There
cannot be more than one because ¥ + mu is monotonic.) Since the Euler—
Lagrange solution (72) never vanishes in the independent subinterval a < r <
¥ the pinch is stable in that interval according to Theorems 10 and 11. In
the independent subinterval r\” < r < r,, we must use the Euler-Lagrange
solution that is small at 7. ; the stability criterion is therefore given by (82)
with L(re:, ") in the place of L(ro:,a). This means that the singularity at
" exerts the same stabilizing influence as would a conducting wall at the same
point. Let us write

Ta, if r, is a singular point between a and ry; , (83)
Aeff =
a, if there is no singular point between a and ry, .
The stability criterion is then given in both cases by (82) with a.¢ in the place
of a.
If r, now designates the last singular point in the current layer, the stability
criterion for the interval r, < r < b is completely analogous to (82). It is

—lf(rw)L(rOe;beff) + f ) g dT > 0, (84)
Toe T,

where bes; is defined by analogy with aer . If there is more than one singular
point in the layer, let (" and r{* be two successive ones, and pick ro somewhere
between 7" and r”. By an argument similar to the one leading to Eq. (81) we

obtain
o

flro)t (ro) = g dr, (85a)

o

flro)&; (ro) = —f'n g dr. (85b)

As before, the trial function &(r) never vanishes. The stability criterion is there-
fore given by the inequality (67), which now reduces to

(2)
L

[ adr>o. (86)

Finally, suppose there are no singular points in the layer. We must then apply
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Theorem 12 to the independent subinterval aerr < r < besr , taking ro at some
interior point of the layer. Using the fact that £ (r) and its derivative are con-
tinuous at the inner edge of the layer, and proceeding just as in the derivation
of Eq. (81), we obtain

Flro)&' (ro) = ;l(;f(TOi)L(Toi,aeff) + ‘/: ‘Tg dr. (87a)
Similarly,
S () 2= - fr) L bar) = [ g d (87b)

We again find that £(r) never vanishes, and the stability criterion reduces to
1 Toe

’__l‘f(rOi)L(rOi , Qett) — Eef(rm)ll(rOeybeﬁ) + f gdr > 0. (88)
0 Toi

The following expressions for f and ¢ are valid to lowest order in § throughout
the layer:
_ ro(kroB, + mB,)®
= ke + m? ’ (89)
_ 2Ky’ dp
I = retmdr
(We need not distinguish here between r,; and re. because their difference is

only of order é.) The integrations in the inequalities (82), (84), (86), and (88)
are therefore easily carried out. We obtain from (86), for example,

Pr?) > P(r™), (91)

which leads to part (2) of the following theorem. Similarly, the other inequalities
lead to parts (3) and (4).

THEOREM 13. A sharp linear pinch is stable if and only if: (1) The quantity
de/dr does not vanish at any point in the current layer where dP/dr is negative.
(2) If r; and r, are any two points in the current layer such that ¢(r;) — ¢(r)
is an integral multiple of =, then P(r,) > P(n) if . > . (3) For all values of
m and k such that there are no singular points in the current layer, we have

(kroB.i + mBg:)’L(r0i , ett) — (kroBze + mBoe)’L(7oe , betr)
+ 2]927'02(1‘), - P;)>0.

(4) For all values of m and k such that there is at least one singular point in the
current layer, we have

(kroB.i + mBs;)’L(ro; , aete) + 2k*r’[P(r®) — P} > 0 (93a)

(90)

(92)
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and

— (kroB.e 4+ mBe.)’L(ro. , betr) + 2k'rd[P. — P(r{?)] > 0, (93b)

where 7" and r{” are respectively the first and last singular points in the

layer.

As was pointed out in the introduction, the stability criterion given by this
theorem depends critically on the detailed structure of the current layer; it
obviously cannot be obtained by simply treating the current-density compo-
nents as delta functions.

Let us now suppose that the plasma pressure vanishes in one or both of the
constant-pressure regions. What would be the effect of replacing the infinitely
conductive pressureless plasma with a vacuum? The energy integral for a hy-
dromagnetic system with a vacuum region is given by

W=W,+W,+W,, (94)

in which the three terms represent contributions from the plasma, the interface,
and the vacuum respectively (1). The plasma contribution is given by Eq. (3)
with the integration restricted to the region occupied by the plasma; it reduces
as before to Eq. (14). The interface contribution is

W,=1 f da(n-£)2n~[v (P + 1 Bz)] (95)

where do is the element of surface area, n is the unit normal pointing into the
vacuum, and the bracketed expression is the jump in V(P + 13B’) as we pass
through the interface into the vacuum. Using Eq. (2), we obtain

[(d/dr)(P + %$B"] = —[By'/1], (96)
which vanishes because Bs is continuous at the edges of the current layer; hence
W, = 0. The vacuum contribution is

W, = 1 f & (v X A, (97)

where A is the vector potential of the perturbed vacuum magnetic field. We are
to minimize with respect to A and £ independently, except that the boundary
condition

nXA=—(n¥B (98)

must be satisfied.
Let us extend the definition of £ into the vacuum region by writing A = ¥ X B.?
Then W, has the same form as W, , and the boundary condition (98) reduces

2 Note added tn proof: This is made possible by imposing the gauge condition A«B = 0.
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to the continuity of £ at the interface. The expression for the complete energy
integral is therefore unchanged if the pressureless plasma is replaced by a vac-
uum. The only difference is that £, since it no longer represents the displace-
ment of a real fluid, can be singular as long as the perturbed magnetic field
Q =V X A=V X (£ XB) is well-behaved. It follows that the stability crite-
rion is the same for a vacuum as it is for a pressureless plasma if there are no
singular points in the vacuum region. If there is a singular point, the Euler—
Lagrange solution given by Eq. (72) (or by its analog for the outer region
1o < r < b) becomes infinite at that point. We have seen in the case of a pres-
sureless plasma that this requires us to use a.s instead of @ in the stability crite-
rion. With a vacuum, however, the singular behavior of ¢ is immaterial®; what
we must examine is the behavior of Q. Because of Eqs. (6¢), (10), and (13b),
t is easy to express Q as a functional of ¢ alone. Using the relations

(dB./dr) = (d/dr)(rBs) = 0, (99)
we obtain
Q. = i(krB. + mBy)¢/r, (100a)
Q = g 7 [E(krB, + mBy)] (100b)
Qz = (kr/m)QO ) (1000)

which remains finite at the singular point. It follows that the singular point
has no effect on the stability criterion for a vacuum, and we have

TueoreEM 14. The stability criterion for a sharp linear pinch with a vacuum
in the region @ < r < ro (or ro < r < b) is given by Theorem 13 with P, = 0
(or P, = 0) and a in the place of a.ts (or b in the place of bes).

Thus a vacuum and a pressureless plasma are equally stable if there is no
singular point in the pressureless region, but the pressureless plasma is more
stable if there is such a point. This result is consistent with the comparison
theorem in Section 3b of Ref. 1. Also, the stability criterion given by Theorem
14 agrees with that of Rosenbluth (21) for the sharp columnar pinch if P, , B,
and a are set equal to zero and with that of Newcomb and Kaufman (22) for
the sharp tubular pinch if P, and P, are set equal to zero. We note that the
results of this section provide a rigorous justification for the heuristic method
used by Newcomb and Kaufman, which was based on the assumption that the
minimizing displacement &/(r) is constant in the current layer. It has been shown
that &(r) is indeed constant except in the small intervals r, — ¢ < r, < 7, + ¢,
and one can easily verify that these intervals do not contribute appreciably to

3 It does, however, prevent us from integrating Eq. (14) by parts to obtain Eq. (15);
the simple form of the energy integral given by Eq. (15) is therefore invalid for a vacuum
region containing a singular point.
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W (£). Thus W(¢) is not changed in lowest order if &(r) is replaced by a con-
stant.

We have obtained the stability criterion for a sharp pinch from Theorem 12,
which involves two Euler—Lagrange solutions, & and £, in each independent
subinterval. It may also be instructive to show how it can be obtained directly
from Theorem 10, which involves only one Euler-Lagrange solution.” Assuming,
for example, that there is at least one singular point in the current layer but none
between a and 7o, let us consider the independent subinterval a < r < 7,,
where r, is the first singular point. The relevant Euler-Lagrange solution is
given by Eq. (72) between a and ;. Requiring £(r) and its derivative to be
continuous at 7y , we can find the solution in the interval ro; < r < r, — € by
an argument similar to the one leading to Eq. (79). The result is

f1, (101a)
1 -
fd_f & — J(ro) L(rai, ) + fm g dr. (101b)

In the interval 7, — ¢ < r < 7, we have f = a(r, — r)°, g = 8, and for the
general solution of the Euler-Lagrange equation:

§r) =e(r, — )" + cr, — )77 (102)

where n, and n, are determined by Eq. (30). The relevant orders of magnitude
area~ 382, 8~48" andn, = 1 — ny, ~ & The constants ¢, and ¢, are deter-
mined by the boundary conditions

E(re —e) =1, (103a)
E(r. — €) = A/aé, (103b)
where
1 ra
A = = f(ro;)L(roi ,a) + f g dr. (104)
Toi ros

Since the second term of Eq. (102) dominates when r is sufficiently close to 7, ,
the solution £(r) goes through zero if and only if ¢ is negative. Substituting
(102) into the boundary conditions (103), and solving for ¢, to lowest order in
¢/6 and 8°/¢, we obtain ¢, = A/a. Since a is necessarily positive, the stability
criterion for the independent subinterval a < r <, r, is that A should be positive,
which is the same as our previous result, the inequality (82).
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Stability and Heating in the Pinch Effect

By M. N. Rosenbluth *

One of the most promising types of thermonuclear
device is the stabilized pinch.»2? This consists of a
pinched cylindrical plasma in which a longitudinal
magnetic field is trapped. This field provides rigidity
against the various types of instability to which the
pinch is subject. An external conductor which
confines the magnetic field of the pinch provides
additional stability, so that, with a proper choice of
parameters to define the equilibrium, the configuration
may be made linearly stable against all perturbations.

In the first part of this paper we shall discuss some
surface instabilities which may arise in the stabilized
pinch. In the second part we shall discuss the dis-
assembly and heating of the plasma which results
from collisions.

SURFACE-LAYER INSTABILITIES

Previous calculations of stability ' 2 have dealt
mainly with an equilibrium with a very sharp surface
layer such as might be expected with a very highly
conducting plasma.? That is, for 0 < 7 < r,, we have

By =0; Bz =opBy; p=(1+ av® — op?)(By?/8x)
and for pr, > r > 7, + 6, we have
By = Byry/r; p=0.

(There is a glossary of symbols at the end of the paper.)

The radius of the external conductor is 87,. In the
thin region between 7, and 7, + 4, large surface
currents must flow. However, it would appear at
first sight that in the limit of small § this complicated
region need not be considered explicitly, since, in the
dynamic equations for the perturbation, one may use
the conditions of continuity of the normal compo-
nents of the magnetic field and stress tensor to relate
the interior solutions to the exterior ones. We shall
now try to give a more complete discussion of the
above-defined problem.

It has been shown previously 4 that if the magnitude
of B does not change along a field line, as is the case
here, and if all distances are large compared with a

Bz = avBo'.

* John Jay Hopkins Laboratory for Pure and Applied
Science, General Atomic Division of General Dynamics
Corporation, San Diego, California. Research on controlled
thermonuclear reactions is a joint program carried out by
General Atomic and the Texas Atomic Energy Research
Foundation.
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Larmor radius and we confine ourselves to the mar-
ginal-stability case w = 0, then the standard magneto-
hydrodynamic equations are valid. That is, the
governing equations for the perturbation are

Vop =[(VXB)xdB + (VxOB)xB)/4n (1)
V6B = 0, 2)

where 6B and dp are the perturbed quantities and B
is the equilibrium magnetic field.

The boundary conditions are regularity at the
origin and 0B, =0 at r = f7,. For the simple
cylindrical geometry of the problem, the perturbations
may be expanded in normal modes, i.e.,

0p, OB = (py, By)eit#+m0). @)

With this substitution, Egs. (1) and (2) may be
easily reduced to a single equation as follows:

X = rBy[(kBz + (m/r)By),

then
2 rn 2y cmx=o, 4)
where
F(r) = m(kBZ + —':130)2 (5a)
and
- 28 2) Lo 30

(2mBg)?
7(m? + kP

d_(2mBy[kBz + (m/[r)Be)
~ 4 { } :

r(m? + k?)

Since we are considering the marginal-stability
problem, it follows that if the solution of Eq. (4)
which is regular at the origin should vanish at the
external conductor, then the equilibrium is neutrally
stable to the perturbation being considered. If the
solution crosses the axis before reaching the external
conductor, this implies instability, since we should
have to move the conductor in to stabilize the system.

(5b)
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For the general equilibrium specified by arbitrary
By(r) and Bz(r), Eq. (4) must, of course, be numerically
integrated, although useful limits may be obtained
from the variational expression 5 ¢ corresponding to
Eq. (4). A code for the numerical investigation of
Eq. (4) has been prepared. However, for the sharp-
layer case, i.e., d < 7,, we may obtain analytic results
using the following procedure:

For » < 7, and r > 7, + 4, i.e.,, where there is no
current, Eq. (4) may be solved explicitly in terms
of Bessel functions. This gives us values for the
logarithmic derivatives which must be joined on to
the solution in the surface layer.

Within the surface layer we can neglect 1/r compared
to 9/dr and rewrite Eq. (4) in the form

d u?
v (v + H) = ook (6)
where
_ _reF_dx
T Bg2X ar
and

_ (k*r,® — m?) Bs2 — 2mkrBzB,
H= (m? + k22)B,? ’ ™

In the region of interest, B, and Bz are changing
rapidly. It is apparent from Eq. (5) that for some
ranges of & and m, depending on ay, F(r) will pass
through zero, so that Eq. (6) develops a singularity.
Parenthetically we may remark that because of this
singularity there is some difficulty about the deriva-
tion of the magnetohydrodynamic Eq. (1). This
question is receiving further study, but for the purpose
of this paper we regard the conventional mode as
valid.

For modes which have no singularity, the right-
hand side is negligible over the small distance 4, and
we find as the stability criterion

[ + H)y, > [+ Hlypiy - (®)

For reference purposes, the explicit forms of these
functions are

. . L (Rry)
[+ H)y, = o0™(kr0)® — STy

[+ Hli g = (m + avkry)?

Im(kr ) Km(kf )
Cpm b0 (k'o)lm':k’o) B (kro)Km"()kfo)
" 1 — Gpum(kro)
where
Gp;m(kfo) = K'”'(ﬁk'o) VIml(kfo) (9)

Kn'(krg) I’ (BR7y)

Equation (8) is, of course, identical with the old
stability calculation.

In discussing the singular case it is convenient to
consider the situation as we integrate towards the

M. N. ROSENBLUTH

singularity. Until we get very close to the sin-
gularity—more specifically, until F ~ é—the quan-
tity # + H will remain constant, as before. This
determines the value of # as we approach the singu-
larity. Very near the singularity we may neglect the
term H', so that in this region

1 + ﬂ_ onstant
” F—c nt.

Hence, 1/u becomes infinite at the singularity as the
integral diverses. Moreover, depending on the sign of
u as it approaches the singularity, 1/# may pass
through zero. This corresponds to X crossing the
axis, i.e., to instability. In order to avoid instability
in this case we must then require that

[« + H],, — [H], > 0, (10a)

(H], — [ + H) 4y > O. (108)

Here, [H], means the value of H at the singularity,
which can easily be shown to be

[H] = [Boz:lt/Boz- (1 1)

It may seem strange that two criteria must be
satisfied for the stability of a single mode. The
explanation is that the singularity in Eq. (6) is so
strong that it completely separates the region interior
to the singularity from the exterior. Thus, if we
violate Eq. (10b), for example, the instability is
essentially confined to the outside of the surface layer.
The new stability criteria are considerably more
complicated than the old one, since they depend on
the structure of the surface layer. This structure
may be described by giving Bg? as a function of
@ = tan—! By/Bgz, the pitch of the field. Equation (10)
then gives upper and lower limits for B,2. It will be
noted that the value of ¢ at the singularity is simply
related to & and m by Ar/m + tan g, = 0. The
range of possible layer structures is further limited
by the requirement that the plasma pressure be
positive throughout. This gives

B2 = B?sin’ g < B(1 + a?)sintq . (12)

These results are plotted in Fig. 1 for av = + 0.25.
As usual, we need consider only m = 0, 4-1.

Curve 1 is the function » + H divided by oy?
evaluated at 7, Curve IT is % + H evaluated at
7o + & with various 8 for m = + 1. The «’s are the
m = 0 values of # + H evaluated at r, + 4, evaluated
at £ = 0, the most dangerous case. Equation (8),
which must be satisfied for all £ and m, hence all ¢,
and for both values of ay, requires that Curve II lie
above Curve I. This means that 8 = 2.5 is unstable.

The more stringent conditions (10) and (12) need
only be applied to values of # and m so that a
singularity develops within the layer. This means,
for the case of positive ay, the region to the right of
@ = tan—11/|o | and, for negative ay, to the left of
this point. Condition (10) requires that at

@ = tan—! [— (ay/ |av |)(By/B:)] .
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Figure 1. Stability diagram for ay = 4- 0.25and § = 1.1,1.75, 2.5

The shape of a thin surface layer is given by a graph of
B4/B,? vs @. To insure stability, this shape must be between
certain limits, shown in this figure for the case av = [25|,
B =1.1, 1.75, 2.5. Previous 1,2 stability criteria require only
that curve | multiplied by «p? must lie above ‘curve Il for all o
between O and ». In addition we must now require for the
range of @ which occurs within the layer that the curve which
defines the layer shape must itself lie between curve | (multiplied
by ap?) and curve Il and above the cross. All physical layers
(with positive plasma pressure) must lie below curve Ill. It can
be shown that curves Il and Il cross for all positive av so that no

stable layer can be constructed

Bg? must lie between Curves I and II and above
the x. In addition, Eq. (12) requires Bz to be
below Curve III. Hence, we deduce that there is
no stable layer structure for ay = + 0.25. Curve IV
shows the type of layer which develops because of
diffusion, as discussed below. This type of structure
for av = — 0.25 is seen to be unstable against long-
wavelength m = 0 modes, for the cases § = 2.5 and
1.75, and against m = 1 modes with pitch close to
that of the external field.

It is, in fact, apparent that for positive ay, i.e.,
the external field in the same direction as the internal
field, no stable layers exist, since (10b) and (12) are
incompatible. It appears that in most cases where
Eq. (8) is satisfied and the field is reversed, some
stable layers can exist. Moreover, their structure is
not too improbable although it appears that the
diffusion layer is likely to be unstable against long-
wavelength m = 0 disturbances and m =1 dis-
turbances near the pitch of the external field. It
will be noted that condition (106) appears much more
dangerous than (10a), so that the instabilities are
limited to the outside regions of the plasma.

The importance of these instabilities is questionable.
The bulk of the plasma is unaffected; moreover they
are slow—the multiplication time is proportional to
the surface layer width, and they cannot remain in
the linear phase of growth for long. It appears
likely that the surface will become unstable and then
restabilize itself in a new equilibrium, perhaps helical
rather than cylindrical. It is noteworthy that such
helical equilibria tend to generate a reversed Bz, as
required for stability. Eventually, as we have noted,
diffusion will make the layer unstable and the cycle
must be repeated.
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While we have treated only the sharp-layer case,
it is clear that the same qualitative features persist
for thick layers. The most important practical
question would seem to be under what conditions the
instability can proceed far enough to drive a signifi-
cant amount of plasma into the walls, thereby releasing
impurities. Experimental work with a reversed Bz
is in progress.

DISASSEMBLY AND HEATING

1t is apparent that the stabilized pinch is not a
true equilibrium when interparticle collisions are
considered. These collisions imply a finite conducti-
vity of the plasma,” so that electric fields must be
present to drive the currents. These fields imply a
change of flux, i.e., a relaxation of the crossed fields.
At the same time, ohmic heating must occur, and
temperature gradients will lead to kinetic thermal
conduction. As a consequence of these involved
processes, the plasma is simultaneously disassembled
and heated. We shall find that a proper choice of
parameters leads to favorable conditions for a thermo-
nuclear reaction with no external heating mechanism.
Qualitatively, this is because the crossed-field con-
figuration represents a higher energy state of the
magnetic field than the state which will prevail after
diffusion has occurred and the components of the fields
have been mixed. The excess energy goes into
heating the plasma. Of course, a quantitative
analysis is required to estimate the magnitude of the
effect and to compare the disassembly and heating
rates.

We therefore study the evolution of the equilibrium
situation described at the beginning of this paper. A
detailed solution will be presented for the case with
the initial conditions § = 0, a sharp layer; ap &~ 1, a
low-temperature plasma; and ay =0, a 90° angle
between the fields. It is apparent from the diffusion
character of the problem that early departure from
the initial values is confined to the neighborhood of
the surface. For analytic simplicity we shall therefore
consider a plane problem, calling the initial surface-
layer position X = 0 and letting the plasma extend
extend — oo and the vacuum field to + oco.

The equations of motion 8 are: Maxwell’s equations;
the conservation of mass, momentum, and energy for
the plasma; Ohm’s Law; and the equation governing
heat transport in the plasma.

These are
/B
VXE = — @ (13)
VxB = 4nj (14)
do -
"M—'{'V‘QV—O (15)
2V (okT) = jxB (16)

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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it(sng+v.(Q+59kTv)—!:.j=0 (17)

B (B X VT) (18)

—_eT [(om ~ 3.5
Q= ~ Big {(2 ) VT % G x B)} (19)
S \/_ ez(,ﬁZT)%nA =o (kT)§ (20)

Here, E is the electric field, B the magnetic field,
j the current density, ¢ the number density of ions or
electrons, % the Boltzmann constant, v the plasma
velocity, my and m. the ion and electron masses, and
A the ratio of maximum to minimum impact para-
meter.

In Eq. (16) we have used the fact that the diffusion
velocities are very subsonic, so that hydrostatic
equilibrium is maintained. (Needless to say, we are
not considering possible unstable motions.) It is
assumed throughout that the distribution functions
are close to Maxwellian, with equal temperatures for
electrons and ions. This is easily shown to be the
case after the diffusion wave has penetrated a distance
large compared to an ion Larmor radius. Equations
(18) through (20) are, of course, valid only within this
limit. They have been derived ® from the transport
equation by considering the small deviations from the
Maxwell distribution which are necessary to com-
pensate for the collision terms in the presence of
field, density and temperature gradients. A con-
venient mathematical tool for this purpose is the
Fokker-Planck Equation.?

For a plane problem with an initially sharp layer,
the system of equation has a similarity solution of the
variable X/+t. The resulting ordinary differential
equations have been integrated on the General
Atomic IBM-650 by Miss G. Roy. The solution is
shown in terms of the appropriate dimensionless
variables in Fig. 2.

The abscissa is the dimensionless similarity variable

¢ = Ho By®/ (mee®) 1 X /88

Here, X is the Lagrangian coordinate representing the
initial position of the mass point, By and g, are the
field strength and particle density in the undisturbed
regions, ¢ is the angle the field makes with the original
direction of the field in the plasma, and g is the
dimensionless pressure, § = 167pkT/B2.

It will be seen that the plasma pressure reaches a
maximum value of about 0.43 near & = 1. The field is
about half uncrossed at this point. For & < | the
solution is nearly isothermal; for & > 1 the density
remains almost constant. In the following discussion
we will refer to & = 1 as the depth of penetration of
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Figure 2. Solution of diffusion Equations 13-20 for the case
ap =1, av =
The results of diffusion resulting from a case in which the
plasmapressureisinitially low compared with the magnetic pressure
and in which the magnetic field in the vacuum is at right angles
to the field in the plasma. Plasma pressure, plasma density,
and magnetic field direction are plotted vs X/v¢ where X is the
Lagrangian distance from the original interface

the wave, and denote quantities at this point by the
subscript .

The following features of the solution seem of some
significance.

1. The stabilized pinch needs only to be preheated to
a temperature consistent with the recombination
rate (about 100 ev). From this point on, the heating
occurs naturally through intermixing of the fields.
The plasma comes to a temperature

T, = 5B,/ 16mg,. (21)

As mentioned earlier, this heating does not occur for
uncrossed fields.®

2. The plasma-vacuum interface moves a distance of
about 1.2 X, into the space initially occupied by the
vacuum field. Hence, in a typical pinch configuration
no plasma will touch the wall until the wave has
penetrated quite deeply.

3. The front of the wave is characterized by a nearly
constant shear. As discussed in the first part of
this paper, the resulting layer shape is linearly un-
stable against only a rather narrow region of wave-
length perturbations if a negative Bz is provided.

4. The rate of penetration depends on the conductivity

at the temperature of the heated plasma. In cgs
units, with the temperature in kilovolts,
Xp = 184711, (22)

5. Similarly, the energy delivered to the plasma is

% = 5 By t} Tp—tergs/cm3sec. (23)
The other important mechanisms in the energy
balance of the burning pinch are fusion and radiative
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loss; i.e., bremsstrahlung. Both of these produce
energy according to

‘% = 0,2F (T)erg/cm3sec. (24)

Thus, if the temperature is greater than a critical
value, about 6 kev for D-T and 50 kev for D-D, the
reaction is self-sustaining.’® It may be well to
operate only slightly above this critical value to that
disassembly is not substantially faster than that
given by Eq. (24). At a fixed temperature, the dis-
assembly time is proportional to 7,2, as may be seen
from Eq. (22). Moreover, using Egs. (24) and (21)
we see that the burning time is proportional to B,~2
Hence, we should expect the efficiency to be a function
of By, only, ie., the current. In fact, it can be
easily shown that if the quantities By%/p, and By,
are held fixed, the complete set of equations for
disassembly, heating, and burning can be simply
scaled to a change in 7, We may note that the
currents must be at least 2 X 10® amp to contain the
« particle resulting from the D-T reaction.

Finally, we indicate in Table 1 a possible D-T
reactor design, taking an optimistic criterion for
disassembly, i.e., X, =7, The figures should be
taken as only a rough indication.

Table 1. Possible Characteristics of a Diffusion-limited,
Self-heated D-T Reactor

Quantity Value Scaling

Major radius of torus . . . . . 30 cm (arbitrary) 7o
Minor radius of torus . . . . . 6 cm 7
Initial plasma radius (r,) 1.5 cm 7o
Current . . . . . . . . . .. 3 x 10* amp (70)®
Pressure at wall . . . . . . . 400 atm 773
Initial pinched density (g,) 1.3 x 10'7/cm? 773
Burning temperature (Tp) . . . 6 kev (ro)®
Disassembly time . . . . . . 0.15 sec 7o?
Total magnetic energy . . . . 4 x 10% joule 7y
Losses (copper torus) . . . . . 2.5 x 10% joule 7o
Energy produced . . . . . . 3 X 107 joule 70
Temperature rise of copper sur-

face due to radiation . . . . 500°C [
Efficiency of burning . . . . . 10% (70)°
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GLOSSARY OF SYMBOLS

7o radius of pinch

By unperturbed azimuthal field

Bz unperturbed longitudinal field

B, value of azimuthal field, By, at 7,

ap ratio of internal longitudinal field, Bz,
to B,.

ay ratio of external longitudinal field, Bz,

to By. ay is defined as positive if the
external field has the same sign as the
internal one

B (as used in first part) ratio of external
conductor radius to 7,

P plasma pressure

[/ thickness of surface layer

k longitudinal wave number of per-
turbation

m azimuthal wave number of perturbation

B, perturbed magnetic field

X, F,G defined in Eq. (4)

u, H defined in Eq. (7)

I(X), K(X) Bessel functions in Watson’s notation

[Bs?)s value of B,? at the radius where F(r) = 0

¢ tan-1(B,/Bz)

o plasma conductivity

B (as used in second part) 16mpkT/B,?

& a dimensionless variable defining the
depth of penetration

Ty temperature at § =1

% undisturbed plasma density

My. Rosenbluth presented a survey, at the Conference,
of Papers P[347 (above), P[354, P[1861, P[376 and
P[2433:

Linear stability theory in a magnetohydrodynamic,
collision-dominated finid is a fairly well understood
subject.!! However, in a high-temperature plasma
in whith the particles interact only through the
macroscopic fields, the situation is not so clear. Let
us begin by discussing the types of waves characte-
ristic of an infinite homogeneous plasma with constant
magnetic field.

The situation is shown in Table 2. The magnetic
field is taken to be in the Z direction, and we consider
a wave propagating in the X, Z plane. The dis-
tribution function is an arbitrary function of the
magnitude of velocity and its component parallel to
the field. In general, four types of wave appear
possible. One of these is a trivial mass flow in the
direction of the field which causes no charge or

MHD StABILITY AND THERMONUCLEAR CONTAINMENT
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Table 2. Types of Plasma Waves

B =By E=E exp[i (0 + kyX + k,2)]; f = [ (v, vp)

Type E Character

Stability

Electrostatic

Overstability occurs if groups of

Plasma oscillation . . Eg & wp = V(4mnet|m,) electrons have a v, substantially
Landau damped exceeding mean thermal velocity.
Transverse
[2) B! Overstable for long wave-lengths
Alfvén waves . . . . Eq ke ~ \/(%) if ion distribution is anistropic.
Undamped-Incompressible
P _ B -
» B Unstable if ;*— > &
Hydromagnetic waves  E. — & —+ P ' -
Y kx 4mp B?
or Py — P, > s
”

current.
with a qualitative discussion of their properties.
comments are not inclusive or exact.

If the distribution function is isotropic and a
decreasing function of energy, it is easy to show on
general statistical grounds that the plasma must be
stable.l? However, it appears that even in the
infinite homogeneous case, small deviations in the
distribution function may lead to alarming instabilities.

For the plasma oscillations, overstability, i.e.,
growing oscillations, occurs for a wavelength such
that kzU = w;,, where U is the velocity of a non-
thermal group of electrons, or of electrons and ions
relative to each other.’® Thus, these particles move
in phase with the disturbance. It will be noted that
the resonant particles see a non-oscillatory electric
field and hence can move across magnetic field lines.

In the event that plasma heating is produced by
electric fields parallel to the magnetic-field lines, we
may expect that groups of high-energy electrons
will be readily created because of the fall-off of cross
section with energy. Thus, such a parallel field
leads naturally to an unstable situation. The Alfvén-
wave instability depends on a similar resonance for
w + kzvz = Larmor frequency.® It is particularly
noteworthy since it occurs even for very small pressure
anisotropies.

The hydromagnetic waves, which are the most
nearly analogous to ordinary sound waves, become
violently unstable for large pressure anisotropies.4
In particular, a shock perpendicular to the field lines
creates a large transverse pressure, P,. The resulting

¢

UNSTABLE

The other three are indicated in Fig. 3
The

STABLE
Figure 3
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instability may play an essential role in producing
the entropy necessary for the existence of the shock.
Thus we see that there are many unstable situations
even for a simple infinite plasma.

When we consider a finite geometry, the situation
is, of course, much more complicated. Progress to
date has been made largely by assuming that the
characteristic scale of inhomogeneities is large com-
pared to Larmor radius and Debye length and that
frequencies are small compared to orbital and plasma
frequencies. As we have heard in the paper presented
by M. D. Kruskal,®® a variational expression for
stability with these approximations may be obtained
which does not differ substantially from the fluid
case. It should be noted that the plasma oscillation
and Alfvén instabilities which we have discussed do
not appear in this approximation. Thus, there has
been no complete theoretical demonstration that any
finite confined plasma can be stabilized.

However, even in this magnetohydrodynamic
approximation it is difficult, although possible, to
attain a stable static equilibrium. Perhaps the
simplest situation to be studied is one in which the
plasma contains no internal magnetic field. This
constant-pressure plasma is then confined by an
external magnetic field which must obey the con-
dition that B?/8a = pressure along the surface. It
has been shown that a necessary and sufficient con-
dition for stability is that the principal normal to the
surface must at all points be directed into the plasma.1®
This result is not restricted to the linear theory.
The geometry is illustrated in Fig. 3. The shaded
region in the diagram represents the plasma. On
the left we have a convex unstable surface. This is
the pinch. The cusp device on the right is concave
at all parts and therefore stable. It appears to be
the only possible confined stable equilibrium in which
there is no field embedded in the piasma. Un-
fortunately, there is a finite rate of plasma loss through
the cusps.

Another situation which has received a preliminary
study is that of a plasma supported against gravity
by a rotating magnetic field. The rotation slows
down the instability but does not eliminate it.1¢
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Figure 4. Stabilized pinch geometry

It is perhaps fair to say that the geometry which
has received the most attention throughout the world
is the stabilized pinch. It was realized early that
the pinch was subject to the above-mentioned
instability.?” In order to correct the situation, an
axial magnetic field was introduced into the plasma.
This situation is shown in Fig. 4. It was then shown
by several authors that complete stability could be
obtained by proper choice of the internal field and
the position of an external conducting shell.’® How-
ever, these treatments neglected the structure of the
current-carrying surface layer in which the field
changes its direction. In practice, this sheath may
be thick.

The equations of motion governing a perturbation
of the form eit%+7% may be easily written. These
equations develop a strong singularity at the radius
where kBz + (m/r)B, = 0, that is to say, at such a
radius that the pitch of the perturbation matches the
spiral of the unperturbed magnetic field. This is
perhaps not surprising since at this radius the per-
turbation will not bend the field lines appreciably
and the plasma can flow freely along the lines.

The mathematical effect of the singularity is that
the region exterior to the singular point is completely
separated from the interior of the plasma. This
brings into existence a class of surface instabilities
which are not affected by the internal stabilizing
field. The essential character of the instability is an
azimuthal bunching of the parallel current filaments
which exist at a given radius.

A useful necessary condition for stability 1 is that
at all points

B2r[d, B, dp
gz[d‘,"raﬁ]+$2°~

Necessary and sufficient conditions have been found
for the favorable case of a very thin transition layer.2
It can be shown that only very special shapes of surface
layer are stable. In particular, no stable surface can
be found unless there is a longitudinal field outside
the plasma which is opposite in direction to the
internal field.

Let us now consider the diffusion and intermixing
of the crossed magnetic fields due to interparticle
collisions—without regard to stability. From the
Rutherford cross section one can compute the various
transport coefficients of the plasma—electrical and
thermal conductivities and thermoelectric coefficients.
Then the usual conservation equations—mass, mo-
mentum and energy—plus Maxwell’s equations provide
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a complete set of dynamical equations for the diffusion
process.® In particular, we study the case of an
initially sharp surface layer which separates a region
containing low-pressure plasma and axial magnetic
field from a vacuum region with azimuthal magnetic
field; i.e., the stabilized pinch. For the early period
of the diffusion, a plane approximation is adequate.
In this case, the equations may be solved in terms of
a similarity variable proportional to original distance
from the interface divided by the square root of time.

The results are shown in Fig.5. The abscissa is the
dimensionless similarity variable; & = 0 is the initial
interface. The scale is such that £ = 1 is about the
skin depth which one would estimate using the
conductivity deduced from the temperature which
exists at § = 1. /g, is the plasma density relative
to its initial value; ¢ is the pitch angle of the magnetic
field; and B is the ratio of material pressure to magnetic
pressure. The significant feature of the results is
that most of the energy liberated by uncrossing the
fields is delivered to the plasma,?®! raising its pressure
to about 0.43 of the initial magnetic pressure, regard-
less of the initial pressure. Hence, there exists a
very efficient mechanism for creating very high
temperature plasmas.
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Figure 5. Solution of the dynamical equations for the plasma
diffusion and field intermixing

Finally, we may inquire as to the eventual result
of the diffusion process. If no external electric field
is applied, the plasma will, of course, diffuse outward
indefinitely until lost to the walls. On the other
hand, an applied axial electric field is capable of
causing a drift to balance out the collisional diffusion;
and, in fact, detailed solutions have been found for
a steady state of this type in collisional equilibrium
away from the walls.?? Unfortunately, this equili-
brium is very unstable hydrodynamically.

To sum up, recent theoretical work has shown
that the stabilized pinch is a self-heating device. On
the other hand, the existence of surface instabilities
will require a careful programming of magnetic
fields. In addition, the large electric fields used in
pinch formation may well lead to the formation of
unstable plasma waves.

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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Some Stable Plasma Equilibria in Combined Mirror-Cusp Fields
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The problem of equilibrium and stability of plasma confined in certain magnetic fields of combined
mirror-cusp form is discussed. These fields have the properties that they are nowhere zero and every-
where increase toward the periphery. Attention is drawn to the importance of the existence of closed
surfaces of constant |Bl-—the magnetic isobars. The conditions for plasma equilibrium are derived
and interpreted; then by exploiting the existence of closed magnetic isobars certain low-8 confined
equilibria are constructed. These equilibria are shown to be stable according to the fluid (double
adiabatic) energy principle and aecording to the small Larmor radius limit theory. A direct proof of
stability against motions which preserve the magnetic moment is given. These equilibria have the
property that there is no current along lines of force so that they are also immune to several drift

instabilities.

I. INTRODUCTION

T is well known' that the adiabatic invariance

of the magnetic moment of a charged particle
provides a mechanism whereby plasma may be
contained within magnetic mirrors; however mirror
systems are usually hydromagnetically unstable.”
It is generally believed that a hydromagnetically
stable situation is provided by fields which increase
away from the center,® as in the spindle cusp; in
these systems the adiabatic invariance is usually
destroyed by a weak field region near the center
so that they are not genuine containment systems.

Recently there has been renewed interest' in
magnetic field configurations which might provide
both the inherent plasma stability attributed to
fields whose strength increases towards the periph-
ery, and the possibility of adiabatic containment.
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Conference on Peace/ul Uses of Atomic Energy (United Nations,
Geneva, 1958), Vol. 32, p. 2

2 M. N. Rosenbluth and C L. Longmire, Ann. Phys. 1,
120 (1957).

3 J. Berkowitz, H. Grad, and H. Rubin, in Proceedings of
the Second United Nations Conference on Peaceful Uses of
Atomic Energy (United Nations, Geneva, 1958), Vol.31, p. 177.
J. Berkowitz, K. O. Frlednchs, H. Goertzel, H. Grad, J.
Killeen, and E. Rubin, in Proceedings of Second United
Nations Conference on the Peaceful Uses of Atomic Energy
(United Nations, Geneva, 1958), Vol. 31, p. 171.

‘Yu. B. Gott M. 8. Ioffe, and V. G. Telkovsky, Nucl.
Fusion Suppl. Pt. 111, 1045 (1962). L. S. Combes, C. C.
Gallagher, and M. A. Levine, Phys. Fluids 5, 1070 (1962).

One way of creating a field configuration of this
type is by the addition of a multipole cusp field
to the basic magnetic mirror (the stabilised mirror),
as in the experiments of Ioffe.' Another method is
by the insertion of a central, current-carrying con-
ductor along the axis of a spindle cusp, thereby
removing the weak field region which otherwise
prevents adiabatic containment in the simple cusp.

General magnetic fields of the desired type can
be identified by their two basic features, namely
that there is a region in which (a) the field is no-
where zero, so that adiabatic containment is pos-
sible, and (b) the magnetic field strength |B| “in-
creases outwards.”

By this second property of |B| “increasing
outwards” one means that there exists a point, or
in some cases a closed curve, which is a local mini-
mum of B®. In the neighborhood of this point, or
curve, the contours defined by B* = const form a
set of closed, nested, surfaces and a surface of larger
B? encloses those of smaller B®. Since these surfaces
are closed one can unambiguously refer to inside
and outside; then one can say that the magnetic
pressure is lower inside any given surface than out-
side it. It is in a region such as this that one hopes
for stable plasma confinement and in this paper we
prove that there exists at least one class of stable
equilibria in these ‘“nonvanishing outwardly in-
creasing” fields.
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It should be emphasised that these surfaces of
B’ = const (which may be termed magnetic isobars)
are not flux surfaces. A line of force will generally
cut a magnetic isobar twice (or not at all) and the
points of intersection could, for example, form the
turning points of particles contained on that line
by the mirror effect.

In Sec. II a brief description is given of an example
of a “hybrid” mirror-cusp field configuration having
the desired properties (a) and (b), while the main
body of the paper, Secs. III-V, is concerned with
finding low-8 equilibria in such fields. Using a fluid
description of the plasma the necessary and sufficient
conditions for equilibrium are derived and are then
interpreted in terms of individual particle motions.
By exploiting the concept of closed magnetic isobars
a class of confined low-8 equilibria are then con-
structed which satisfy these equilibrium conditions.
These have the property that p, and p; are them-
selves constant over a magnetic isobar.

In Sec. VI the stability of this class of equilibria
is discussed and they are shown to be stable against
interchange instability (which is the only form of
magnetohydrodynamic instability possible at low 8)
according to both the double adiabatic energy prin-
ciple of Bernstein, et al.,” and the small-Larmor-
radius-limit energy principle of Kruskal and Ober-
man.’ Finally this stability is demonstrated in a
more direct manner.

As the equilibria have the additional property
that there is no current along the lines of force
they should also be immune to several of the non-
magnetohydrodynamic instabilities such as the drift
instabilities.

II. MAGNETIC FIELD CONFIGURATION—AN
EXAMPLE

As an example of the type of magnetic field under
discussion we may consider the configuration em-
ployed by Ioffe.* Our object is merely to indicate
some of the main features of this arrangement,
particularly of the magnetic isobars.

Near the center of a mirror machine the field
strength increases as one moves along the axis
toward either mirror, but decreases as one moves
radially away from the axis. A method of creating a
field having the property that B® increases both
axially and radially would therefore appear to be to
superimpose on the mirror a second field which
increases as one moves from the axis but which is

s 1. B. Bernstein, E. A. Frieman, M. D. Kruskal, and
R. M. Kulsrud, Proc. Roy. Soc. (London) A244, 17 (1958).
( 9.58 I\;I D. Kruskal and C. R. Oberman, Phys. Fluids 1, 275
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constant along the axis. Such a field is the “multi-
pole” field provided by 2I straight rods parallel to
the axis of the machine, adjacent rods carrying
current in opposite directions. Near the axis the
multipole field is approximately

* -1
B, = —% (:‘_B) cos 16,

u* (r\! @0
B, = +f —) sin 16,

where R is the distance of the rods from the axis
and I* is a measure of the current in each rod. (The
relationship of I* to the actual current I depends
on the way that the current is distributed over the
cross section of the rods and on the shape of this
cross section; for thin rods I* = 2I.) The original
mirror field can be approximately represented by

B. = B[l — alo(2xr/L) cos (2x2/L)],
B, = —aBol\(2xr/L) sin (2rz/L),

where I, and I, are modified Bessel functions. The
mirrors are situated at z = =+1L and the mirror
ratio is

2.2)

R.=(14+a/10 - a). 23)

The formation of closed magnetic isobars of the
required type can be illustrated easily when | = 2,
for then near the center of the machine, z = 0,
r = 0, the field strength is given by

B* = Bl — &)’ + 4°B}

. I: 1%L

-{a(l ~a L+ 5 ‘ﬁ‘;"’]} @4

BiR* 2
If the current in the multipole rods is small,
so that

I* < ("R*/2L%a(1 — a)B3, (2.5)

then the isobars form a family of hyperboloids.
However, as the current in the multipole rods is
increased so that

I** > (xR*/2L)a(1 — )B; (2.6)

these magnetic isobars become closed (ellipsoidal)
surfaces of the type we desire.

Before leaving this topic it is worth while noting
that the situation is not so simple when I > 2. If
I > 2 then sufficiently near the axis the multipole
field is always too weak to compensate for the radial
decrease in the basic mirror field. In this case closed
magnetic isobars are still formed but instead of a
single minimum at r = 0, z = 0, there are 2] minima
situated off the axis.

MHD STABILITY AND THERMONUCLEAR CONTAINMENT
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. LOW-g EQUILIBRIA

We now consider the problem of plasma equilib-
rium in a magnetic field. For equilibrium the pressure
tensor P must satisfy

jxB = V-P 3.1)
where j and B are connected by
V xB = 4xj, (3.2)
V:B=0. (3.3

A full solution to the problem of equilibrium
would involve solving these equations subject to
boundary conditions such as the given currents
in the external conductors. However, apart from the
impracticability of such a program, it is our present
aim to derive general results independent of the
detailed arrangement of conductors, and so ap-
plicable to all fields possessing properties (a) and
(b) of Sec. I. We therefore seek low-8 solutions
(where B is the ratio of plasma pressure to magnetic
pressure).

At zero B the magnetic field is the vacuum field
due to external currents; this is easily calculated
and will be considered as given. The first order
perturbation in the field, due to plasma pressure,
is given by:

j1xB, = VP, (34
V xB, = 4xj,, (3.5)
V:B, =0, (3.6)

where j, is the plasma current density, B, the original
vacuum field, and B, the perturbation in this field
due to the presence of plasma.

Now it might appear that these equilibrium equa-
tions should have solutions j, and B, for any given
plasma pressure P and that there is, therefore, no
problem. Indeed in axisymmetric configurations such
as mirror or cusp this is true, but in general these
equations will not possess a solution and our first
task is to determine the conditions which P must
satisfy in order that a solution should exist.

This is perhaps most easily done as follows: Egs.
(3.5) and (3.6) are simply the magnetostatic equa-
tions which are known to have a solution if j,
exists and V-j, = 0. Our procedure therefore will
be to solve Eq. (3.4) for j, and then to examine under
what conditions V-j, = 0. (As we shall be con-
cerned only with j, and B, we may henceforth
suppress all subscripts, provided we remember that
B always denotes a vacuum field.)

To illustrate the argument consider the case of
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scalar pressure when Eq. (3.4) reduces to
jxB = Vp. 3.7
The first necessary condition on p is clearly
B:Vp =0 or dp/ds =0, (3.8)

i.e., p is constant along a field line. Given that (3.8)
is satisfied we can then solve (3.7) for j, (the
component of j perpendicular to B),

j. = (=VpxB)/B*, (3.9)
and therefore
i = (~VpxB)/B*+ \B (3.10)
where X is an arbitrary scalar.
The requirement div j = 0 then gives
B:V\ = div (Vp xB/B’), (3.11)
or
B:-V\ = —2VB-(Vp xB)/B®. (3.12)
Equation (3.12) can be written
d\/ds = —2VB-(Vp xB)/B*, (3.13)

where s is measured along the line of force. A
necessary condition for this equation to possess a

- unique single valued solution for X is clearly

9( Z&-%{u@ ds = 0, (3.14)
where the integral is taken along any closed line
of force. Newcomb’ has shown that this is also
a sufficient condition.

In the case of scalar pressure, then, Eqgs. (3.8)
and (3.14) are the necessary and sufficient conditions
which the pressure must satisfy if the plasma is
to be in equilibrium. We now turn to the situation
of immediate interest, namely when the pressure
is anisotropic, and seek the analogous conditions on
the pressure tensor.

Anisotropic Pressure

In a coordinate system with the principal axis
along the magnetic field the pressure tensor can be
written

P=pI+ (p, — p,)on (3.15)

where n is a unit vector in direction of B and IT
is the unit tensor.
The momentum balance equation is now

jxB = V-P,
7 W. A. Newcomb, Phys. Fluids 2, 362 (1959).

(3.16)
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and from the parallel component of this equation
the first condition on p, and p, is obtained,

n-Vp, +n-div {(p, — pJon} = 0,  (3.17)
or
opy , L —p) OB _
nwt E e =0 (3.18)

where s is measured along the magnetic field. This
condition specifies a relation between p, and p,
along a field line, replacing the simpler condition
dp/ds = 0 of the scalar pressure theory. However,
if (3.18) is satisfied then equation (3.16) can be
solved for j, as before,
L = —Vp,xB/B* + Bxdiv [(p, — p,)nn]/B’,
(3.19)

and so
V-j. = 2Vp,-(BxVB)/B’
+ div {B xdiv [(p, — p,)nn]/B*}.  (3.20)

It can be shown that because B is a vacuum magnetic
field the last term can be transformed to give

div {B xdiv [(p, — p,)nn]/B}

=V — p)-BxVB)/B'.  (3.21).
Therefore we finally obtain
V:i. = V. +p)-BxVB)/B. (322

Then, just as in the case of scalar pressure, the
vanishing of V-j requires

Vi =B:-VA= —-V:-j, (3.23)
so0 that
BV = —V(p, + p)-(BxVB)/B. (3.24)
As before this can be written
d\/ds = —V(p, + p)-(BxVB)/B*,  (3.25)

and if the lines of force were closed this would lead
to the condition

$ Vo, + 90 BEYB 4 = o,

In the systems we are considering the lines of force
are not closed within the plasma volume but leave
the region of interest. In this case, provided the
plasma is surrounded by a region in which no cur-
rent flows, we must have

).BxVB) VB)

(3.26)

f V. +py =0, (327
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where the integral is taken from the point where
the line of force first enters the plasma to the point
where it first leaves it. (If this condition were not
satisfied A would not be zero when the line of force
left the plasma and there would be currents flowing
in the plasma free region.) Furthermore, it is clear
that if this condition (3.27) is satisfied, a unique A
can always be constructed from (3.25). The condi-
tion (3.27) is therefore both necessary and sufficient.

With anisotropic pressure, then, the necessary
and sufficient conditions for equilibrium are (3.18)
and (3.27). Before discussing some distributions
satisfying these conditions we will first interpret
these equilibrium constraints from the point of view
of individual particle motions.

IV. PARTICLE MOTION

The first constraint (3.18) is simply the require-
ment that the particles be in equilibrium along each
field line considered individually. This is entirely
consistent with the basic idea of adiabatic mirror
containment; for if the magnetic moment of a
particle

uw= Vi/2B (4.1)

is constant as it moves along a field line then
pL = f ou, © = “B du de, (4.2)
o [ o o= uB)dude,  (43)

where p is the local density of particles of specified
magnetic moment p and energy e. This is propor-
tional to (i) the number of such particles on the
line = f(u, ¢ L), (ii) to the density of lines = B,
(iii) to the fraction of the time each particle spends
near the point of interest

dt « dl/(e — uB)}. (4.9

Therefore, for particles contained by the mirror
effect,

L= f flu, ¢, L) 2_(5_#—3_2;;3?)“1“ de, (4.5)

pr= [ fu & DB — uB) dude.  (46)
It can be verified by direct substitution that these
expressions satisfy (3.18).

The second constraint (3.27) may be interpreted
in terms of the guiding center drifts of the particles
on a field line. As is well known,’ the first order
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guiding center drift of a particle in an inhomogeneous
magnetic field is

me (B x VB)
e B®

where V, is the velocity perpendicular to the field
and V, that along it.

The total current associated with this drift is
then

Vp = Gvi+vd, @91

io = [(BxVB)/B(p, + pv)
and the divergence of this expression is
V:ip = V(p. + p1)-(BxVB)/B*,

so that the second condition for equilibrium can be
written

(4.8)

4.9)

.\ ds
f(V'JD)E = 0. (4.10)
The meaning of this is made clear if we consider
not the integral along a field line but the integral
over an infinitesimal flux tube. This can be obtained
by multiplying (4.10) by B dA when we have

[ vivar=o, (@.11)

Flux tube

so that the condition found for the existence of a
solution to the magnetostatic fluid equations is
equivalent to the statement that the divergence of
the current associated with the guiding center drifts
should vanish when averaged over any flux tube.
Of course, the current due to the guiding center
drifts is not the same as the total current but the
difference can be expressed as the curl of the mag-
netization per unit volume, whose divergence van-
ishes identically. The constraint might therefore
equally well be applied to the total current or to
the drift current.

V. A CLASS OF EQUILIBRIA

Now let us consider some particular solutions of
the equilibrium constraints (3.18) and (3.27), ap-
propriate to the type of magnetic field under dis-
cussion. It should first be noted that the second
constraint (3.27) is not serious in systems of axial
symmetry such as the mirror or the spindle cusp.
For in these systems the symmetry ensures that Vp,
VB, and B are coplanar vectors (lying in the r, 2,
plane) so that the expression

V(. + »)-VBxB (5.1)

vanishes identically. Similarly in any cylindrically
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symmetric system Vp and VB are both radial
and (5.1) again vanishes.

In other field configurations the constraint (3.27)
can be a severe restriction; for example, the condition
(3.27) [or rather (3.26) which is then the appropriate
form] can never be satisfied by any confined plasma
distribution within a circular torus. For in such a
configuration, symmetry ensures that the integral
(3.26) can only vanish if the integrand vanishes.
As (VB x B) is in the direction parallel to the sym-
metry axis of the torus this means that p must be
constant in this direction, thus the plasma is not
confined. This, of course, is the well known lack of
equilibrium in a simple toroidal field.

If we leave aside for the moment the question of
whether it represents contained plasma or not, a
restricted class of solutions to the equilibrium con-
straints can always be found by demanding that (5.1)
should vanish. This is certainly achieved if (p, + py)
is a function only of B, then, since the “paralle]”
equilibrium equation (3.18) gives p, in terms of p,,
this will make p, and p, individually functions of B
alone. Making p, and p, functions of B alone means
that the surfaces of constant B, the magnetic iso-
bars, are also surfaces of constant p, and p,.

The significance of magnetic field configurations
which possess closed magnetic isobars now becomes
apparent. Equilibria in which p, and p, are functions
only of B exist in all field configurations, but only
in those which possess closed magnetic isobars do
these equilibria correspond to confined plasma
configurations.

This class of low-g equilibria, which have

pL=piuB), p = pu(B), (5.2)

and, from (3.18),

Bp; = py — Py (5.3)

where the prime denotes differentiation with respect
to B, is one whose stability will be proved in the
next section.

An example of this class of equilibrium distri-
bution is

»y = CB(B, — B)"
p. = nCB*B, — B

if B<B,,

(5.4)
if B > B,,

where n, B, are arbitrary parameters. These equi-
libria correspond to plasma confined within the
contour B = B, which, by the basic property of
our fields, can be a closed contour.

Particle distribution functions corresponding to

po=p =0
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the equilibria (5.4) can also be written down in
terms of the distribution in u, € space (see Sec. IV).
A particle distribution function which leads to the
pressure distributions (5.4) is
f(u, & = (uBo — 9" V9w, e < uB,
flu, & =0, e > uB,

where g(u) is an arbitrary function of the magnetic
moment.

(5.5

VI. STABILITY OF THE SPECIAL EQUILIBRIA

To examine the stability of the equilibria de-
scribed in the previous section let us first continue
with a fluid description and consider the double
adiabatic hydromagnetic energy principle derived
by Bernstein et al.®

According to this, the stability of a plasma con-
figuration with anisotropic pressure is determined
by the sign of the minimum of the energy integral.

Wy = [ dr{1QF - J-Q xk + (V9"

+ (V-5E-Vp) + . [VE - 3¢
+ ¢V [Ep — p)] — (o — P (a-V)E
+ a-@ V)£ — 44’1},

where

6.1)

Q=Vx{ExB), ¢=n@V)}
a=@0V)-— (§Vhn,

and ¥ is an arbitrary displacement vector.
should be positive for stability.

Examination of the energy integral shows that
only the first term |Q?| is independent of 8 so that
at low 8 it must dominate (and so make W positive)
except for those displacements which themselves
make Q zero. Physically these displacements are
those which do not change the vacuum magnetic
field—the so called interchange modes.

Hence, at sufficiently low B we can determine
stability by examining W for displacements which
satisfy

(6.2
Woin

Q=Vx@ExB) =0, 6.3
and for these displacements
qg=V-£+§VB/B, a = (V-¥{+¥§VB/Bn.

With the aid of (6.3) and (6.4) the energy integral
can be greatly simplified. In fact
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Wy = [ dr (3pud® + ds(opy — po)

+ s"(p. + 2py) + d(E- V) + slE- Vo — po)]}
(6.5)
where, for brevity, we have written
VE=d, ¥-VB/B = s.

So far this is quite general. For the equilibria found
in Sec. V, namely those which have the properties

Bp; = py — p4,
(6.6)

pL = pu(B), m = p(B),

W p reduces to

W, = [ ar {3%,“ Br@ + 9 — pusl’

+ s’[2m - 3%. - Bpf:l}- 6.7

The first term is clearly non-negative so a sufficient
criterion for stability according to the double
adiabatic principle is

2p, — (1/3py) — Bpl > 0. (6.8)

Some explicit examples of equilibria were given by
equations (5.4). For these examples

6.9

and a sufficient stability condition is n > $. [Note
that this is also the condition for f(u, ¢) in Eq. (5.5)
to be continuous at ¢ = uB,.]

There is, however, one reservation to be made
about the argument above. The last term in the
energy integral contains the expression p?/p; and
for some of the equilibria of the form (5.4) this
quantity tends to infinity at the plasma boundary.
This will make possible, even at low 8, some in-
stabilities in which the magnetic field 7s perturbed.
These are the “mirror” instabilities. As the plasma
density falls to zero at the surface it is not clear
whether this particular instability is to be taken
seriously, but in any case it can be avoided by de-
manding that p}/p; be finite at the surface. This
requirement is satisfied by the equilibria given in
(54)ifn > 2.

The Small Larmor Radius Theory

The double adiabatic energy principle is open to
two objections; firstly, that it is based on the
assumption that in the plasma motion there is no
heat flow along the lines of force, and secondly, that

Bpl = 2p. — [0 — L/nlpl/p:
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although a component of the displacement ¥ along
the lines of force is formally allowed, it is hard to
see what is the real significance of this parallel dis-
placement (since, in collisionless plasma, motion
arises from E x B drifts).

An energy principle which is sufficient, though
not necessary, for stability and which overcomes
these objections was given by Kruskal and Ober-
man.® This is based on the use of the Boltzmann
equation in the limit of small Larmor radius. In
this case the appropriate energy integral can be
written

Wao = W5 — [ dr (20,0079

+ @Gp — 200 + 1, (6.10)

where

I = fdf{z miff—%dude

and
3V:=e— uB. (6.12)

In these expressions € and u are again the energy
and magnetic moment as in Sec. V, and f* is the
perturbation in the particle distribution function.
The quantity fo(s, ¢, L) is the unperturbed particle
distribution, and in their derivation of the energy
principle Kruskal and Oberman require that

9fo/de < 0. 6.13)

The minimization of §W,, has to be carried out over
£ and also over f* subject to certain constraints. The
minimization over f* is carried out in the Kruskal
and Oberman paper but we will have no need of
this in the present discussion.

It can be shown that the minimum of éW,, is
independent of £; as it should be, so that £ can be
taken to be zero.

As before, at sufficiently low 8 we need only con-
sider displacements which satisfy

¥ x(ExB) = 0 (6.14)

so that Eqgs. (6.4) are again valid. However as &
is now perpendicular to B a further simplification
can also be obtained. For (6.14) implies that

ExB = Vo, (6.15)
and so £ can now be written
E=§ = BxVe/B’, (6.16)
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whence
V&= —2VB/B. 6.17)

With the aid of Egs. (6.4) and (6.17) the energy
integral may be reduced to

Wao = [ dr (@, — BoDS)

+fdfzm;ffVB|-dude

A 2p2 QE) 2 __ 1*2 ]
[uB (ae s 3f/oel’ (6.18)
This can be further simplified, for
po= X m ff%ﬂ, dude,  (6.19)
and since
1/V, = aV,/de, (6.20)

a partial integration leads to

p= - m, f f ,AB’V.(%) dedu.  (6.21)

Then if p = p,(B), differentiation with respect to
B gives

Bt =2, + Zm [ -‘%,BI—’ (g—i") dedu  (6.22)

and using this result the energy integral is finally
reduced to

W=~ [ ar T m, ff%d,‘ dt{é}oﬁ/%—e}, (6.23)

which is certainly positive if df,/d¢ < 0, a condition
which is in any case required for the present energy
principle to be valid.

According to the small Larmor radius theory of
Kruskal and Oberman, then, equilibria of the class
(6.6) are stable if their corresponding particle dis-
tributions satisfy

/3¢ < 0. (6.24)

Now, the specific examples (5.4) correspond to the
particle distributions (5.5) and so are stable if

(8/99(mB, — &" 1 < 0, (6.25)

that is if » > %. In this case, therefore, the two
energy principles lead to the same criterion.

VII. DIRECT PROOF OF STABILITY

The simplicity of the form of the final expression
for 8W,, suggests that a more direct demonstration

221



1536

of the stability of our equilibria should be possible
which did not make use of the full Kruskal-Oberman
theory. Such a proof of stability can be developed
by extension of the argument given by Newcomb®
in discussing stability of infinite Maxwellian plasma.
Let us consider a general particle motion in which
the magnetic moment of a particle is invariant,
(as in small Larmor radius theory), then a general
constant of the motion constructed from individual

particle constants is
s=[Laacaraq, . (7.1)

]

Now consider a distribution function f = f, + f,
where f, is the initial equilibrium distribution whose
stability we want to discuss. Then we can write

55 =0 = f% du de dr {G'(/o, W of

T L S )

where
G'(f, w) = 8G/of.

Now the equilibria we are considering have the
property that p, and p, are functions of B only
and satisfy the parallel equilibrium equation. Such
equilibria correspond to particle distribution func-
tions which depend only on u and ¢ [i.e., fo(e, 1, L)
is independent of the particular flux line considered].
For these equilibria, therefore, the function G can
be chosen so that

G'(fo, m) = ¢ (7.3)
(at least if 8f,/d¢ is monotonic) and with this choice
for G Eq. (7.2) becomes

f%dﬂ dedr (e of)
- _[B _Gpr L
= f v, du de dr 20f,/39 + , (7.4)

which may be written

B
8K = _fﬁdﬂ dedr (7.5)

C) S
2(3fo/¢)

8 See I. B. Bernstein, Phys. Rev. 109, 10 (1958); also
%VI. D. Kruskal and C. R. Oberman, Phys. Fluids 1, 275
1958).
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where K is the total kinetic energy of the particles,
B
k- g du dedr (d).

If now df,/de < 0, it is clear that to second order
in &f, 8K > 0 so that any change éf in f around fo
will ¢ncrease the kinetic energy. Furthermore if the
equilibrium has no electric fields and is of such low 8
that the magnetic field is a vacuum field, then any
perturbations can also only increase the field
energies. As the total energy is constant it is clear
that 8f cannot grow indefinitely and in particular
cannot grow exponentially. Therefore the system is
stable.

Thus it has been shown that any low-8 equilib-
rium with f, a function only of 1 and e is stable
against all perturbations in which the magnetic
moment is an invariant. This is certainly sufficient
to demonstrate stability against hydromagnetic
motions.

VIII. CONCLUSIONS

Attention has been drawn to the importance of
the existence of closed magnetic isobars in certain
hybrid mirror—cusp magnetic fields. The existence
of these closed isobars enables one to construct a
class of confined plasma distributions, those with
p. and p, functions of B alone, which satisfy the
conditions for equilibrium. These equilibria are
stable against interchanges according to both the
double-adiabatic energy principle and the more com-
plete small-Larmor-radius theory. A direct proof of
stability against all motions in which the magnetic
moment of a particle is an invariant has also been
given.

It is easily shown that these equilibria have the
property that j; = 0, which ensures that they are
also stable against several forms of ‘drift” insta-
bility; the large amount of “shear” and the high
curvature of some of these hybrid fields may also
inhibit some other micro-instabilities. One concludes,
therefore, that these nonvanishing outwardly in-
creasing fields do indeed offer the possibility of
stable plasma confinement.
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